WIIS

二項関係の完備律・完全律・三分律

集合A上の二項関係Rが完備律、完全律、三分律を満たすことの意味をそれぞれ定義した上で、それらの関係を解説するとともに、具体例を挙げます。

二項関係の推移律

集合A上の二項関係Rのもとで、Aの任意の要素x,y,zについて、xがyと関係を持つとともにyがzと関係を持つ場合にxとzが関係を持つことが保証されるならば、Rは推移律を満たすと言います。推移律を満たす二項関係の例を挙げます。

二項関係の非対称律

集合A上の二項関係Rのもとで、Aの任意の要素x,yについて、xがyと関係を持つ場合にはyがxと関係を持たない場合、Rは非対称律を満たすと言います。非対称律を満たす二項関係の例を挙げます。

二項関係の反対称律

集合A上の二項関係Rのもとで、Aの任意の要素x,yについて、xがyと関係を持つとともにyがxと関係を持つ場合にはxとyが一致する場合、Rは反対称律を満たすと言います。反対称律を満たす二項関係の例を挙げます。

二項関係の対称律

集合A上の二項関係Rのもとで、Aの任意の要素x,yについて、Rのもとでxがyと関係を持つ場合にはyとxが関係を持つ場合、Rは対称律を満たすと言います。対称律を満たす二項関係の例を挙げます。

二項関係の非反射律(無反射律)

集合A上の二項関係Rのもとで、Aの任意の要素xがx自身と関係を持たない場合、Rは非反射律を満たすと言います。非反射律を満たす二項関係の例を挙げます。

二項関係の反射律

集合A上の二項関係Rのもとで、Aの任意の要素xがx自身と関係を持つ場合、Rは反射律を満たすと言います。反射律を満たす二項関係の例を挙げます。

商集合

集合 A のそれぞれの要素 a に対して、それを代表元とする同値類 [a] を生成できますが、そのようなすべての同値類からなる A の部分集合族を商集合と呼びます。商集合は A の分割です。つまり、A の任意の要素は何らかの同値類に属するとともに、異なる複数の同値類に属することはありません。

二項関係どうしの合成関係

2つの関係 R, S が与えられたとき、xRy と ySz がともに成り立つような y が存在するような順序対 (x,z) からなる集合を R と S の合成関係と呼び、これを S∘R で表します。

同値類

集合 A 上の同値関係 R が与えられたとき、A の要素 x を任意に選べば、R のもとで x と同値であるような A のすべての要素からなる集合を構成できます。このような A の部分集合を x を代表元とする同値類と呼びます。

自己関係の定義と具体例

始集合と終集合が一致する関係を自己関係と呼びます。自己関係は与えられた集合の直積の部分集合として定義されます。