プライス・テイカーの仮定
市場経済において売買される有限\(N\)種類の商品の数量の組み合わせを表すベクトルを、\begin{equation*}\boldsymbol{x}=\left(
\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}\end{array}\right) \in \mathbb{R} ^{N}
\end{equation*}で表記し、これを商品ベクトルと呼びます。商品ベクトル\(\boldsymbol{x}\)の第\(n\)成分である\(x_{n}\)は、\(n\)番目の商品の数量を表す実数です。商品ベクトルを行ベクトル\begin{equation*}\boldsymbol{x}=\left( x_{1},\cdots ,x_{N}\right) \in \mathbb{R} ^{N}
\end{equation*}として表記することもできます。すべての商品ベクトルからなる集合をユークリッド空間\begin{equation*}\mathbb{R} ^{N}
\end{equation*}とみなし、これを商品集合と呼びます。
現実の消費者は様々な制約に直面しているため、商品空間\(\mathbb{R} ^{N}\)に属するすべての商品ベクトルを自由に選択できるわけではありません。そのような事情を踏まえた上で、消費者が選択可能な商品ベクトルからなる集合を消費集合と呼び、これを、\begin{equation*}X\subset \mathbb{R} ^{N}
\end{equation*}で表記します。消費集合に属する商品ベクトル\begin{equation*}
\boldsymbol{x}=\left(
\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}\end{array}\right) \in X
\end{equation*}を消費ベクトルと呼びます。消費ベクトル\(\boldsymbol{x}\)の第\(n\)成分である\(x_{n}\)は、消費者による\(n\)番目の商品の消費量を表す実数です。
消費者理論では多くの場合、消費者が直面する制約の中でも経済的な制約を重視します。市場経済において消費者が商品を手に入れるためには、商品と引き換えに商品の価格(price)に相当する対価を支払う必要があります。支払いの源泉は消費者の所得(wealth)ですが、所得は自身が保有する商品(労働を含める)を市場で販売することにより得られる収入や、自身が保有する資産(株式など)からの収入に依存します。これらの事情を踏まえた上で、消費者の支出額は所得の範囲内に収まっていなければならないというのが経済的制約の意味するところです。経済的制約を明示的に考慮した消費集合を特に予算集合(budget set)と呼びます。
予算集合を定式化するためには商品の価格や消費者の所得を定式化する必要があります。まず、商品の価格について考えましょう。市場経済において取引されるそれぞれの商品の価格は、その商品が取引される市場における需要と供給のバランスに応じて変化します。つまり、供給よりも需要が相対的に大きくなれば価格は上昇し、逆に需要よりも供給が相対的に大きくなれば価格は下落します。ただ、多くの場合、個々の消費者が商品の購入量を変化させても、その商品の市場価格は変化しません。なぜなら、個々の消費者による需要が市場全体の需要に占める割合は極めて小さいため、個々の消費者が購入量を変化させても市場の需給バランスに影響を与えることはできないからです。消費者理論では多くの場合、以上の事情を踏まえた上で、個々の消費者は任意の商品の市場価格に影響を与えることはできず、消費者にとって任意の商品の価格は外生的に与えられるパラメーターであるものとみなします。このような仮定をプライス・テイカーの仮定(price taker assumption)や価格受容者の仮定などと呼びます。
現実の経済においてプライス・テイカーの仮定は成り立つとは限りません。少数かつ特定の消費者による需要に依存する商品の市場では、個々の消費者が購入量を変化させれば市場の需給バランスも大きく変化し、それに応じて商品の市場価格も変化します。このような消費者にとって商品の価格はもはや外生変数ではなく、自身がその水準を主体的に操作できる内生変数となります。ただ、このようなケースは不完全競争の理論と呼ばれる分野の中で明示的に扱うものとし、以降では特に断りのない限りにおいて、プライス・テイカーを仮定します。つまり、個々の消費者は、すべての商品について、その市場価格を与えられたものとして意思決定を行わざるを得ない状況を想定するということです。
価格ベクトル
市場経済において売買される有限\(N\)種類の商品のそれぞれの価格を表すベクトルを、\begin{equation*}\boldsymbol{p}=\left(
\begin{array}{c}
p_{1} \\
\vdots \\
p_{N}\end{array}\right) \in \mathbb{R} ^{N}
\end{equation*}で表し、これを価格ベクトル(price vector)と呼びます。価格ベクトル\(\boldsymbol{p}\)の第\(n\)成分\(p_{n}\)は、商品\(n\)の価格を表す実数です。
価格ベクトルを列ベクトルとして定義しましたが、多くの場合、スペースの制約を考慮した上で、これを行ベクトル\begin{equation*}
\boldsymbol{p}=\left( p_{1},\cdots ,p_{N}\right) \in \mathbb{R} ^{N}
\end{equation*}として表記することもあります。本来、列ベクトルと行ベクトルは数学的には互いに区別されるべき概念ですが、ここでは特に断りのない限り両者を同一視し、両者は交換可能であるものとします。
通常、任意の商品ベクトル\(\boldsymbol{p}\)はすべての商品\(n\in \left\{ 1,\cdots ,N\right\} \)について\(p_{n}>0\)を満たすものと仮定します。つまり、すべての商品について、その市場価格は正の実数だけを値としてとり得る状況を想定するということです。これは、消費者が商品を入手するためには、その対価としてその商品の価格に相当する金額を支払う必要があることを意味します。商品の価格が正の実数であるとき、その商品は経済財(good)であると言います。
場合によっては、負の実数を値としてとり得る価格を持つ商品について考えることもあります。これは、消費者がその商品を入手する際に、その対価としてその商品の価格に相当する金額を逆に受け取ることを意味します。ある商品の価格が負の実数であるとき、その商品は非経済財(bad)であると言います。例えば、健康被害をもたらす食品や大気汚染、騒音など、消費することで消費者に被害をもたらすものは非経済財です。環境経済学などでは非経済財を明示的に扱いますが、以降では特に断りのない限り、すべての商品は経済財であるものとします。つまり、すべての商品の価格は正の実数を値としてとり得るものとします。
商品の種類が有限\(N\)種類であっても、個々の商品の価格は実数を値としてとり得るため、\(N\)種類の商品の価格の組み合わせ、すなわち価格ベクトルは無数に存在します。すべての商品が経済財である場合、すべての価格ベクトルからなる集合は、\begin{equation*}\mathbb{R} _{++}^{N}=\{\left( p_{1},\cdots ,p_{N}\right) \in \mathbb{R} ^{N}\ |\ \forall n\in \{1,\cdots ,N\}:p_{n}>0\}\end{equation*}となります。
繰り返しになりますが、プライス・テイカーの仮定のもとでは、それぞれの消費者は価格ベクトル\(\boldsymbol{p}\)を与えられたものとして意思決定を行うことになります。
所得
予算集合を定式化するためには、商品の価格に加えて消費者の所得を定式化する必要があります。そこで、消費者の所得を、\begin{equation*}
w\in \mathbb{R} _{++}
\end{equation*}で表します。特に断りのない限り、所得\(w\)は正の実数だけを値としてとり得るものと仮定します。
消費者の所得水準は、その人が保有する商品(労働を含める)を市場で販売することにより得られる収入や、自身が保有する資産(株式など)からの収入に依存します。消費者が保有する商品の数量がモデルの初期条件として与えられており、なおかつ、プライス・テイカーの仮定よりすべての商品の価格が外生的に与えられている状況を想定するのであれば、消費者が保有する商品や資産の市場評価額もまた消費者にとって外生的に決まります。つまり、プライス・テイカーの仮定のもとでは、消費者の所得水準もまた消費者にとって外生的に与えられるパラメーターとなります。
予算集合
プライス・テイカーの仮定のもとでは、消費者にとって価格ベクトルと所得はいずれも外生的に与えられるパラメーターとみなされることが明らかになりました。そこで、これらを用いて予算集合、すなわち、消費者が直面する経済的制約を明示的に考慮した消費集合を定式化します。
市場が定める価格ベクトルが\(\boldsymbol{p}\in \mathbb{R} _{++}^{N}\)である場合に、消費者が消費ベクトル\(\boldsymbol{x}\in X\)を消費するために必要な支出額は、\begin{eqnarray*}\boldsymbol{p}\cdot \boldsymbol{x} &=&p_{1}x_{1}+\cdots +p_{n}x_{n} \\
&=&\sum_{n=1}^{N}p_{n}x_{n}
\end{eqnarray*}です。この消費者の所得水準が\(w\in \mathbb{R} _{++}\)である場合、この消費者に課される経済的制約は、支出が所得の範囲内に収まっていなければならないという条件\begin{equation*}\boldsymbol{p}\cdot \boldsymbol{x}\leq w
\end{equation*}として定式化されます。このような条件を満たす消費ベクトルからなる集合が予算集合であり、それを、\begin{equation*}
B(\boldsymbol{p},w)=\{\boldsymbol{x}\in X\ |\ \boldsymbol{p}\cdot
\boldsymbol{x}\leq w\}
\end{equation*}で表記します。予算集合を\(B\left( \boldsymbol{p},w\right) \)と表記する理由は、予算集合は消費者にとって外生的に与えられる\(\boldsymbol{p}\)と\(w\)の水準に依存して変化するからです。
\end{equation*}となり、これは下図のグレーの領域として描写されます。ただし、境界を含みます。
\end{equation*}となります。つまり、消費者が一カ月あたりにコメへ支出する金額\(p_{1}x_{2}\)と、消費者が一カ月あたりにコメ以外の商品へ支出する合計金額\(x_{2}\)の和が、所得\(w\)以下に収まっていなければならないということです。このように、商品や価格の単位を上手く解釈することにより、一般性を失うことなく、多数の商品が存在する経済を2財モデルとして表現できます。
\end{equation*}となります。物価変動を考慮したモデルを作ることもできます。具体的には、来期の物価水準が今期比で\(\alpha \%\)(百分率)だけ変化するのであれば、来期における合成財の価格を\(p_{2}=1+\frac{\alpha }{100}\)とすればよく、この場合の予算制約は、\begin{equation*}x_{1}+\left( 1+\frac{\alpha }{100}\right) x_{2}\leq w
\end{equation*}となります。
予算対応
消費集合\(X\subset \mathbb{R} ^{N}\)に加えて価格ベクトル\(\boldsymbol{p}\in \mathbb{R} _{++}^{N}\)と所得\(w\in \mathbb{R} _{++}\)が与えられたとき、予算集合は、\begin{equation*}B\left( \boldsymbol{p},w\right) =\{\boldsymbol{x}\in X\ |\ \boldsymbol{p}\cdot \boldsymbol{x}\leq w\}
\end{equation*}と定義されます。予算集合\(B\left( \boldsymbol{p},w\right) \)は消費集合\(X\)の部分集合であり、価格ベクトル\(\boldsymbol{p}\)と所得\(w\)の水準に依存して変化します。したがって、価格ベクトルと所得からなるそれぞれの組\(\left( \boldsymbol{p},w\right) \in \mathbb{R} _{++}^{N}\times \mathbb{R} _{++}\)に対して、そのときの予算集合\(B\left( \boldsymbol{p},w\right) \subset X\)を像として定める対応\begin{equation*}B:\mathbb{R} _{++}^{N}\times \mathbb{R} _{++}\twoheadrightarrow X
\end{equation*}が定義可能です。このような対応\(B\)を予算対応(budget correspondence)と呼びます。
\end{equation*}を像として定めます。例えば、\begin{eqnarray*}
B\left( 1,2,5\right) &=&\left\{ \left( x_{1},x_{2}\right) \in \mathbb{R} _{+}^{2}\ |\ x_{1}+2x_{2}\leq 5\right\} \\
B\left( 3,7,30\right) &=&\left\{ \left( x_{1},x_{2}\right) \in \mathbb{R} _{+}^{2}\ |\ 3x_{1}+7x_{2}\leq 30\right\}
\end{eqnarray*}などとなります。
演習問題
- この人が直面する予算集合を定式化してください。
- 商品\(1\)の価格が\(600\)円に上昇するとともに、この人が\(2000\)円の臨時収入を得た場合に直面する予算集合を定式化してください。
プレミアム会員専用コンテンツです
【ログイン】【会員登録】