ラプラスの確率と頻度による確率の定義を踏まえた上で、今回は両者をつなぐ「ビュッフォンの針」と呼ばれる実験について解説します。これは床に針を繰り返し落とすことで円周率を求めるという実験です。

2019年4月7日:公開

ビュッフォンの針

18世紀のフランスの学者ビュッフォン(Buffon)が考えた以下の問題から話を始めます。

問題(ビュッフォンの針)
平行な線を引いた床に針を落としたとき、線と針が交差する確率は?

下図中の4本の平行な黒い線は床に引いた線、それ以外の短い線は床に落とした針をそれぞれ表しています。青い線は床の線と交差する針です。下図には7本の針が描かれており、その中の4本が床の線と交わっているため、頻度による確率にしたがうならば、上の問題に対する答えは\(\frac{4}{7}\)となります。とは言え、たった7回では実験として少なすぎます。精度を高めようとすれば針を何百回、何千回、さらには何万回と床に投げた上で、針と床の線が交わった回数を数える必要があります。興味と時間があれば試してみてください。

図:床に針を落とす

続いて、この問題をラプラスの確率のもとで考えてみましょう。問題を考えやすくするために以下のように定式化します。

問題(ビュッフォンの針)
床に間隔\(d\)で平行な直線を引き、そこに長さ\(L\)の針を落とす。ただし、\(L<d\)である。このとき針がいずれかの直線と交差する確率は?

床に描かれた平行な線の間隔\(d\)よりも短い長さ\(L\)の針を用意しているため、針が2本以上の直線と交わることはありません。実は、床に落とした個々の針は、その針の中心から最も近い直線までの最短距離\(x\)(下図のオレンジの線)と、直線に対する針の傾き\(\alpha \)(下図の紫の角度)の2つの情報によって特定できます。つまり、値の組\(\left( \alpha ,x\right) \)が与えられれば床に落とした1本の針を特定できますし、逆に、針を1本落とすと値の組\(\left( \alpha ,x\right) \)が1つだけ得られます。

図:針が線と交わるための条件

では、\(\alpha \)と\(x\)はそれぞれどのような値を取り得るでしょうか。\(x\)は針の中心から最も近い線までの最短距離ですので、針の中心が何らかの直線の上にくる場合に\(x=0\)で最小になり、針の中心が隣り合う2本の直線のちょうど真ん中にくる場合に\(x=\frac{d}{2}\)で最大になります。つまり、\(x\)の変域は、\begin{equation*}
0\leq x\leq \frac{d}{2}
\end{equation*}です。続いて\(\alpha \)の範囲ですが、針と線が平行の場合に\(\alpha =0,\pi \)となり、これらが\(\alpha \)の最小と最大です。つまり、\(\alpha \)の変域は、\begin{equation*}
0\leq \alpha \leq \pi
\end{equation*}です。値の組\(\left( \alpha ,x\right) \)が取り得る値の範囲を下図のオレンジの領域(境界を含む)として図示しました。

図:ビュッフォンの針において起こり得る場合

床に落とした針の位置と向きを表す\(\left( \alpha ,x\right) \)は必ずオレンジの領域上の1つの点として表されます。したがって、ラプラスの確率で言う「実験や観察によって起こり得るすべての結果」は上の図のオレンジの領域の面積\(\frac{d\pi }{2}\)で表されます。

図:針と線が交わるための条件

続いて、この領域の中から「針がいずれかの直線と交差する」という現象が起こるような領域を見つける必要があります。針と直線が交わる条件を上の図を使って考えます。\(x\)と\(AC\)の長さを比べたとき、\(x\leq AC\)が成り立つ場合には針と直線が交わります。では、\(AC\)の長さをどのように求めればよいでしょうか。三角形\(ABC\)の辺である\(AB\)の長さは針の長さ\(L\)の半分\(\frac{L}{2}\)です。さらに、角\(ABC\)の大きさは\(\alpha \)と同じですので、\(\sin \alpha =\frac{AC}{AB}\)という関係から、\begin{eqnarray*}
AC &=&\sin \alpha \times AB \\
&=&\sin \alpha \times \frac{L}{2}
\end{eqnarray*}となります。したがって、針と直線が交わる条件\(x\leq AC\)は、\begin{equation*}
x\leq \sin \alpha \times \frac{L}{2}
\end{equation*}となります。この条件を満たす領域を先ほどの図の上に描いたのが下図の黄色い領域です。

図:ビュッフォンの針において針と線が交わる場合

この領域の面積は、\begin{align*}
\int_{0}^{\pi }\left( \frac{L}{2}\cdot \sin \alpha \right) d\alpha & =\frac{L}{2}\int_{0}^{\pi }\sin \alpha \ d\alpha \\
& =\frac{L}{2}\left[ -\cos \alpha \right] _{0}^{\pi } \\
& =\frac{L}{2}\{(-\cos \pi )-(-\cos 0)\} \\
& =\frac{L}{2}\{1-(-1)\} \\
& =L
\end{align*}となります。

議論をまとめましょう。「床に針を投げる」という実験によって起こり得るすべての結果はオレンジの領域の面積\(\frac{d\pi }{2}\)で表され、さらにその中でも「針がいずれかの直線と交わる」という現象が起こるような結果は黄色の領域の面積\(L\)で表されます。したがって、「針がいずれかの直線と交わる」ことのラプラスの確率は、\begin{equation*}
\frac{L}{\frac{d\pi }{2}}=\frac{2L}{d\pi }
\end{equation*}となります。

 

モンテ・カルロ法

ビュッフォンの針を頻度の確率とラプラスの確率、それぞれのアプローチから考えました。繰り返しになりますが、ビュッフォンの針を頻度の確率で考えることとは、針を何百回、何千回、さらに何万回と床に投げて、針と床の線が交わった回数を数えることを意味します。一方、ラプラスの確率のもとでは、針と床の線が交わる確率\(p\)は、\begin{equation*}
p=\frac{2L}{d\pi }
\end{equation*}となります。ただし、\(L\)は針の長さ、\(d\)は床に引かれた線の間隔であり、\(L<d\)という関係が成り立ちます。

興味深いのは、上の確率には円周率\(\pi \)が含まれているという点です。そこでこれを円周率について解くと、\begin{equation*}
\pi =\frac{2L}{dp}
\end{equation*}となります。

針の長さ\(L\)と床に引かれた平行線の間隔\(d\)は自分で決められます。さらに、針と床の線が交わる確率\(p\)を頻度による確率として求めます。つまり、針を繰り返し投げて\(p\)を求めるということです。すると上の式の右辺の要素がすべて明らかになるため、結果として円周率\(\pi\)が求まります。つまり、ビュッフォンの針の解を頻度による確率として求めることは、同時に円周率を頻度による確率として求めることにもなります。針を繰り返し投げることで円周率を経験的に求めることができるのです。

ビュッフォンやラプラスの時代には実際に針を床に落とす必要がありましたが、現在はこのような作業をコンピュータ上で仮想的に行うことができます。針が床にランダムに落ちる様子を、コンピュータは乱数を使って疑似的に再現できるからです。

乱数を使って問題を解く手法をモンテ・カルロ法(Monte Carlo method)と呼びます。現在のモンテカルロ法は非常に洗練されたものですが、その発想の起源を辿るとラプラスに行きつきます。ビュッフォンの針に対してラプラスが新たな光を差し込むことでモンテ・カルロ法のもととなる考えが生まれたのです。

次回は針を投げる回数を増やすにつれて円周率がどのように変遷していくかをグラフから観察します。
次へ進む 演習問題(プレミアム会員限定)