WIIS

LATEST MATERIALS

最新の教材

ファトゥの補題

ファトゥの補題と単調収束定理

非負値をとるルベーグ可測関数列が各点収束する場合、各点極限のルベーグ積分は、関数列の要素である個々の関数のルベーグ積分からなる列の下極限以下になります(ファトゥの補題)。特に、関数列が増加列である場合、両者は一致します(単調収束定理)。

Read More »
ルベーグ可測関数

有界関数のルベーグ積分の加法性

有限測度を持つルベーグ可測集合上に有界なルベーグ可測関数が定義されている状況においてその集合を2つのルベーグ可測集合に分割した場合、個々の集合におけるルベーグ積分の和をとればもとの集合におけるルベーグ積分が得られます。

Read More »
ルベーグ可測関数

有界収束定理(有界なルベーグ可測関数列の極限のルベーグ積分)

有界なルベーグ可測関数列が一様収束する場合、その関数列のルベーグ積分からなる数列の極限は、一様極限のルベーグ積分と一致します。また、一様有界なルベーグ可測関数列が各点収束する場合、その関数列のルベーグ積分からなる数列の極限は、各点極限のルベーグ積分と一致します。

Read More »
ルベーグ可測関数

有界関数のルベーグ積分の単調性

有限測度を持つルベーグ可測集合上に定義された2つの有界関数の間に一方的な大小関係が成立する場合、両者のルベーグ積分の間にも同様の大小関係が成立します。また、有界関数の絶対値のルベーグ積分は、もとの関数のルベーグ積分の絶対値以上になります。

Read More »
ほとんどいたるところ

可測関数とほとんど至るところで等しい関数

ルベーグ測度空間は完備です。つまり、零集合であるようなルベーグ可測集合を任意に選んだとき、その任意の部分集合がルベーグ可測になります。したがって、ルベーグ可測関数とほとんどいたるところで等しい関数もまたルベーグ可測になります。

Read More »
ボレル可測関数

可測関数列の上極限・下極限・極限は可測関数

可測関数列が定める値からなる数列の上極限や下極限や極限を与える写像は可測関数です。また、拡大実数値可測関数列が定める値からなる拡大実数列の上極限や下極限や極限を与える写像は拡大実数値可測関数です。

Read More »
ボレル可測関数

可測関数どうしの上限と下限は可測関数

可算個の可測関数の値の上限や下限を値として定める写像は可測関数ないし拡大実数値可測関数です。また、可算個の拡大実数値可測関数の値の上限や下限を値として定める写像は拡大実数値可測関数です。

Read More »
ボレル可測関数

可測関数どうしの商は可測関数

ルベーグ可測関数どうしの商として定義される関数はルベーグ可測関数です。また、ボレル可測関数どうしの商として定義される関数はボレル可測関数です。

Read More »
ディリクレの関数

有界関数のルベーグ積分とリーマン積分の関係

有界閉区間上に定義された有界関数がリーマン積分可能である場合にはルベーグ積分可能である一方で、ルベーグ積分可能な関数はリーマン積分可能であるとは限りません。したがって、ルベーグ積分はリーマン積分の拡張です。

Read More »
ルベーグ積分

単関数の定数倍のルベーグ積分

有限な測度を持つルベーグ集合上に定義された単関数の定数倍として定義される単関数のルベーグ積分は、もとの単関数のルベーグ積分の定数倍と一致します。

Read More »
ボレル可測関数

可測関数どうしの積は可測関数

ルベーグ可測関数どうしの積として定義される関数はルベーグ可測関数です。また、ボレル可測関数どうしの積として定義される関数はボレル可測関数です。

Read More »
ボレル可測関数

可測関数どうしの差は可測関数

ルベーグ可測関数どうしの差として定義される関数はルベーグ可測関数です。また、ボレル可測関数どうしの差として定義される関数はボレル可測関数です。

Read More »
単関数

単関数の定義と具体例

ルベーグ可測集合上に定義された実数値関数がルベーグ可測であるとともに、その値域が有限集合である場合、そのような関数を単関数と呼びます。

Read More »
ボレル可測関数

特性関数(指示関数)

実数空間の部分集合が与えられれば、変数がその集合に属する場合には1を返し、変数がその集合に属さない場合には0を返す関数が定義可能です。これを特性関数と呼びます。特性関数が可測であることと、特性関数を定義する集合が可測であることは必要十分です。

Read More »
ボレル可測関数

可測関数どうしの和は可測関数

ルベーグ可測関数どうしの和として定義される関数はルベーグ可測関数です。また、ボレル可測関数どうしの和として定義される関数はボレル可測関数です。

Read More »
分布関数

確率変数の分布関数

それぞれの実数に対して、確率変数がその実数以下の値をとる確率を特定する関数を分布関数と呼びます。分布関数の概念を定義するとともに、その基本的な性質について解説します。

Read More »
ボレル可測関数

可測関数の定数倍は可測関数

ルベーグ可測関数の定数倍として定義される関数はルベーグ可測関数です。また、ボレル可測関数の定数倍として定義される関数はボレル可測関数です。

Read More »
指示関数

指示関数(指示確率変数)

可測な事象が与えられれば、その事象が起こる場合には1を返し、その事象が起こらない場合には0を返す確率変数が定義可能です。これを指示関数(指示確率変数)と呼びます。指示関数を用いれば集合演算を数値演算に置き換えて考えることができます。

Read More »
アーベルの補題

アーベルの補題とクロネッカーの補題

アーベルの補題と呼ばれる式変形テクニックを利用すれば、数列の積として定義される数列の部分和を扱いやすい形に変形できます。アーベルの補題を踏まえた上で、クロネッカーの補題と呼ばれる命題を示します。

Read More »
コルモゴロフの収束定理

コルモゴロフの三級数定理

独立な確率変数列の無限級数が収束するという事象はその確率変数列の末尾事象であるため、コルモゴロフの0-1法則より、その事象の確率は0または1のどちらか一方に定まります。その確率が1であるための必要十分条件を与えるのがコルモゴロフの三級数定理です。

Read More »
コルモゴロフの0-1法則

コルモゴロフの0-1の法則(確率変数列の末尾事象の確率)

確率変数列の要素である無限個の確率変数の分布の影響を受ける一方で、有限個の確率変数の分布の影響を受けない事象を末尾事象と呼びます。確率変数列が独立である場合、その任意の末尾事象の確率は0または1のどちらか一方に定まります。これをコルモゴロフの0-1の法則と呼びます。

Read More »
独立な確率変数

有限個の確率変数の独立性

有限個の確率変数が生成するσ代数どうしが独立である場合、それらの確率変数は独立であると言います。有限個の独立変数が独立であることを様々な形で表現するとともに、独立性を判定する方法について解説します。

Read More »
確率ベクトル

確率ベクトルの定義

標本点に対してn次元ベクトルを1つずつ割り当てる写像を確率ベクトルと呼びます。確率論の公理と整合的な形で確率ベクトルの概念を定義します。

Read More »
同時確率変数

2つの確率変数の独立性

2つの確率変数が生成するσ代数どうしが独立である場合、それらの確率変数は独立であると言います。2つの独立変数が独立であることを様々な形で表現するとともに、独立性を判定する方法について解説します。

Read More »
同時確率変数

同時確率変数の定義

標本点に対して2次元ベクトルを1つずつ割り当てる写像を同時確率変数と呼びます。確率論の公理と整合的な形で同時確率変数の概念を定義します。

Read More »
上半連続性

拡大実数値関数の上半連続性・下半連続性

任意の上方位集合が閉集合であるような拡大実数値関数を上半連続関数と呼び、任意の下方位集合が閉集合であるような拡大実数値関数を下半連続関数と呼びます。上半連続かつ下半連続であることと連続であることは必要十分です。

Read More »
ボレル測度

ボレル測度の定義

ルベーグ外測度の定義域をボレル集合族に制限することにより得られる写像をボレル測度と呼びます。ルベーグ測度と同様に、ボレル測度もまたσ-加法測度としての性質を満たします。

Read More »

ワイズの理念とサービス内容。

REGISTER

プレミアム会員登録はこちらから。

CONTACT

メールフォームをご利用ください。