WIIS

LATEST MATERIALS

数学 | 最新の教材

凸最適化・凹最適化

1変数関数の凹最適化問題の解

1変数関数の凹最適化問題の内点解が満たす条件を劣勾配(劣微分)を用いて特徴づけます。微分可能な凹関数に関して、これは最大化のための1階の条件と必要十分です。

Read More »
クーン・タッカーの定理

線型不等式制約のもとでの多変数関数の最大化問題

多変数関数の変数がとり得る値の範囲が1本の線型不等式によって制限されている場合に、関数の最大点が満たす条件(クーン・タッカー条件)を特定するとともに、最大点を具体的に導出する方法(ラグランジュの未定乗数法)について解説します。

Read More »
クーン・タッカーの定理

線型不等式制約のもとでの多変数関数の最小化問題

多変数関数の変数がとり得る値の範囲が1本の線型不等式によって制限されている場合に、関数の最小点が満たす条件(クーン・タッカー条件)を特定するとともに、最小点を具体的に導出する方法(ラグランジュの未定乗数法)について解説します。

Read More »
凸関数・凹関数

多変数の凸関数・凹関数の劣勾配と劣微分

多変数の凸関数や凹関数の内点における劣勾配と呼ばれる概念を定義するとともに、その関数が内点において全微分可能である場合、そこでの劣勾配と勾配ベクトルは概念として一致することを示します。

Read More »
凸最適化・凹最適化

1変数関数の凸最適化問題の解

1変数関数の凸最適化問題の内点解が満たす条件を劣勾配(劣微分)を用いて特徴づけます。微分可能な凸関数に関して、これは最小化のための1階の条件と必要十分です。

Read More »
凸最適化・凹最適化

1変数関数の凸最適化・凹最適化

制約集合が凸集合であり目的関数が凸関数であるような制約条件付き最小化問題を凸最適化(凸計画問題)と呼び、制約集合が凸集合であり目的関数が凹関数であるような制約条件付き最大化問題を凹最適化(凹計画問題)と呼びます。

Read More »
平面

平面としての超平面

ユークリッド空間における平面と呼ばれる概念を定義するとともに、3次元ユークリッド空間において平面と超平面が概念として一致することを示します。

Read More »
超平面

超平面

ユークリッド空間における超平面と呼ばれる概念を定義するとともに、法線ベクトルと超平面の関係や、点と超平面の距離について解説します。

Read More »
直線

直線としての超平面

ユークリッド空間における直線と呼ばれる概念を定義するとともに、2次元ユークリッド空間において直線と超平面が概念として一致することを示します。

Read More »
ネイピア数

積分を用いた自然対数関数の定義

自然対数関数や自然対数などの概念は積分を用いて定義することもできます。その場合にも、自然対数関数の微分に関する既知の性質や対数法則などがそのまま成立します。

Read More »
不定積分

部分積分

区間上に定義された関数が2つの関数の積として定義されている場合、それを巧みに解釈することにより不定積分や定積分を容易に特定できる場合があります。

Read More »
不定積分

置換積分(直接置換の定理)

区間上に定義された関数の不定積分ないし定積分を具体的に特定することが困難である場合でも、被積分関数が複数の関数をあるパターンのもとで組み合わせる形で表現されていることに気づいた場合には、それを容易に積分できます。

Read More »
不定積分

置換積分(逆置換の定理)

区間上に定義された関数の不定積分ないし定積分を具体的に特定することが困難である場合には、被積分関数の変数を適切な形で変換することにより容易に積分できるようになる場合があります。

Read More »
リーマン積分

関数の原始関数と不定積分

関数の原始関数および不定積分と呼ばれる概念を定義するとともに、区間上に定義された連続関数に関しては両者は一致することを示します。

Read More »
逆三角関数

逆正接関数(arctan関数)の極限

逆正接関数(arctan関数・アークタンジェント関数)や逆正接関数との合成関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。

Read More »
リーマン積分

微分積分学の第1基本定理

有界な閉区間上に定義された関数が連続である場合には、その関数の定積分を特定する関数を微分すればもとの関数が得られることが保証されます。

Read More »
逆三角関数

逆余弦関数(arccos関数)の極限

逆余弦関数(arccos関数・アークコサイン関数)や逆余弦関数との合成関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。

Read More »
逆三角関数

逆正弦関数(arcsin関数)の極限

逆正弦関数(arcsin関数・アークサイン関数)や逆正弦関数との合成関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。

Read More »
関数の商

関数の商の連続性

連続な関数どうしの商として定義される関数もまた連続です。同様に、片側連続(右側連続・左側連続)な関数どうしの商として定義される関数もまた片側連続です。

Read More »
関数の積

関数の積の連続性

連続な関数どうしの積として定義される関数もまた連続です。同様に、片側連続(右側連続・左側連続)な関数どうしの積として定義される関数もまた片側連続です。

Read More »
リーマン積分

微分積分学の第2基本定理(求積分定理)

有界な閉区間上に定義された関数がリーマン積分可能であり、その関数の原始関数であるような連続関数が存在する場合、原始関数が区間の端点に対して定める値の差は、もとの関数の定積分と一致します。

Read More »
リーマン積分

定積分に関する平均値の定理

有界な閉区間上に定義された連続関数に対してその平均値を定義するとともに、連続関数が定義域上の少なくとも1つの点に対して定める値が平均値と一致することを示します。

Read More »
関数の差

関数の差の連続性

連続な関数どうしの差として定義される関数もまた連続です。同様に、片側連続(右側連続・左側連続)な関数どうしの差として定義される関数もまた片側連続です。

Read More »
リーマン積分

定積分と順序(定積分の単調性)

有界閉区間上でリーマン積分可能な2つの関数について、一方の関数が定める値が他方の関数が定める値以上であるとき、両者の定積分の間にも同様の大小関係が成り立ちます。

Read More »
リーマン積分

1変数関数の差の定積分

リーマン積分可能な関数の差として定義される関数もまたリーマン積分可能であり、もとの関数の定積分の差をとれば新たな関数の定積分が得られます。

Read More »

ワイズの理念とサービス内容。

REGISTER

プレミアム会員登録はこちらから。

CONTACT

メールフォームをご利用ください。