指数関数の高階微分
指数関数\(a^{x}\)は全区間\(\mathbb{R} \)上に定義可能であるため、それぞれの\(x\in \mathbb{R} \)に対して定める値が、\(a>0\)を満たす実数\(a\in \mathbb{R} \)を用いて、\begin{equation*}f\left( x\right) =a^{x}
\end{equation*}と表される関数\(f:\mathbb{R} \rightarrow \mathbb{R} \)が定義可能です。ただし、\(a=1\)の場合には、\begin{equation*}f\left( x\right) =1^{x}=1
\end{equation*}となり、\(f\)は定数関数となります。定数関数の高階微分については自明であるため、以降では\(a>0\)かつ\(a\not=1\)の場合について考えます。
指数関数\(f\)は微分可能であり、導関数\(f^{\prime }:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{eqnarray*}f^{\prime }\left( x\right) &=&\frac{d}{dx}a^{x}\quad \because f\text{の定義} \\
&=&a^{x}\ln \left( a\right) \quad \because \text{指数関数の微分}
\end{eqnarray*}を定めます。
導関数\(f^{\prime }\)は指数関数\(a^{x}\)の定数倍であるため微分可能であり、2階の導関数\(f^{\prime \prime }:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{eqnarray*}f^{\prime \prime }\left( x\right) &=&\frac{d}{dx}f^{\prime }\left( x\right)
\quad \because f^{\prime \prime }\text{の定義} \\
&=&\frac{d}{dx}a^{x}\ln \left( a\right) \quad \because f^{\prime }\left(
x\right) =a^{x}\ln \left( a\right) \\
&=&\ln \left( a\right) \frac{d}{dx}a^{x}\quad \because \text{関数の定数倍の微分} \\
&=&\ln \left( a\right) \cdot a^{x}\ln \left( a\right) \quad \because \text{指数関数の微分} \\
&=&a^{x}\left[ \ln \left( a\right) \right] ^{2}
\end{eqnarray*}を定めます。
同様の議論を繰り返すことにより以下を得ます。
\end{equation*}と表されるものとする。\(f\)は\(C^{\infty }\)級であり、\(n\in \mathbb{N} \)を任意に選んだとき、\(f\)の\(n\)階の導関数\(f^{\left(n\right) }:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation*}f^{\left( n\right) }\left( x\right) =a^{x}\left[ \ln \left( a\right) \right] ^{n}
\end{equation*}を定める。
指数関数のテイラー近似多項式(マクローリン近似多項式)
一般に、関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} \)が定義域上の点\(b\in X\)において\(n\)階微分可能である場合、点\(b\)における関数\(f\)の\(n\)次のテイラー近似多項式\begin{eqnarray*}P_{n,b}\left( x\right) &=&f\left( b\right) +f^{\prime }\left( b\right) \cdot
\left( x-b\right) +\frac{f^{\prime \prime }\left( b\right) }{2!}\cdot \left(
x-b\right) ^{2}+\cdots +\frac{f^{\left( n\right) }\left( b\right) }{n!}\cdot
\left( x-b\right) ^{n} \\
&=&\sum_{k=0}^{n}\left[ \frac{f^{\left( k\right) }\left( b\right) }{k!}\cdot
\left( x-b\right) ^{k}\right]
\end{eqnarray*}が定義可能です。
先に明らかになったように、指数関数は\(\mathbb{R} \)上の任意の点において\(C^{\infty }\)級であるためテイラー近似多項式が定義可能ですが、具体的には以下のようになります。
\end{equation*}と表されるものとする。点\(b\in \mathbb{R} \)および自然数\(n\in \mathbb{N} \)をそれぞれ任意に選んだとき、\(f\)の点\(b\)における\(n\)次のテイラー近似多項式は、\begin{eqnarray*}P_{n,b}\left( x\right) &=&a^{b}+a^{b}\ln \left( a\right) \cdot \left(
x-b\right) +\frac{a^{b}\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot
\left( x-b\right) ^{2}+\cdots +\frac{a^{b}\left[ \ln \left( a\right) \right] ^{n}}{n!}\cdot \left( x-b\right) ^{n} \\
&=&\sum_{k=0}^{n}\left[ \frac{a^{b}\left[ \ln \left( a\right) \right] ^{k}}{k!}\cdot \left( x-b\right) ^{k}\right] \end{eqnarray*}となる。
\end{equation*}を定めるものとします。ただし、\(a>0\)かつ\(a\not=1\)です。先の命題より、この関数\(f\)の点\(0\)における\(n\)次のテイラー近似多項式、すなわちマクローリン近似多項式は、\begin{eqnarray*}P_{n,0}\left( x\right) &=&a^{0}+a^{0}\ln \left( a\right) \cdot \left(
x-0\right) +\frac{a^{0}\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot
\left( x-0\right) ^{2}+\cdots +\frac{a^{0}\left[ \ln \left( a\right) \right] ^{n}}{n!}\cdot \left( x-0\right) ^{n} \\
&=&1+\ln \left( a\right) \cdot x+\frac{\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot x^{2}+\cdots +\frac{\left[ \ln \left( a\right) \right] ^{n}}{n!}\cdot x^{n}
\end{eqnarray*}です。したがって、例えば、\begin{eqnarray*}
P_{1,0}\left( x\right) &=&1+\ln \left( a\right) \cdot x \\
P_{2,0}\left( x\right) &=&1+\ln \left( a\right) \cdot x+\frac{\left[ \ln
\left( a\right) \right] ^{2}}{2!}\cdot x^{2} \\
P_{3,0}\left( x\right) &=&1+\ln \left( a\right) \cdot x+\frac{\left[ \ln
\left( a\right) \right] ^{2}}{2!}\cdot x^{2}+\frac{\left[ \ln \left(
a\right) \right] ^{3}}{3!}\cdot x^{3} \\
&&\vdots
\end{eqnarray*}などとなります。
\end{equation*}を定めるものとします。ただし、\(a>0\)かつ\(a\not=1\)です。先の命題より、この関数\(f\)の点\(1\)における\(n\)次のテイラー近似多項式は、\begin{eqnarray*}P_{n,0}\left( x\right) &=&a^{1}+a^{1}\ln \left( a\right) \cdot \left(
x-1\right) +\frac{a^{1}\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot
\left( x-1\right) ^{2}+\cdots +\frac{a^{1}\left[ \ln \left( a\right) \right] ^{n}}{n!}\cdot \left( x-1\right) ^{n} \\
&=&a+a\ln \left( a\right) \cdot \left( x-1\right) +\frac{a\left[ \ln \left(
a\right) \right] ^{2}}{2!}\cdot \left( x-1\right) ^{2}+\cdots +\frac{a\left[
\ln \left( a\right) \right] ^{n}}{n!}\cdot \left( x-1\right) ^{n}
\end{eqnarray*}です。したがって、例えば、\begin{eqnarray*}
P_{1,0}\left( x\right) &=&a+a\ln \left( a\right) \cdot \left( x-1\right) \\
P_{2,0}\left( x\right) &=&a+a\ln \left( a\right) \cdot \left( x-1\right) +\frac{a\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot \left( x-1\right)
^{2} \\
P_{3,0}\left( x\right) &=&a+a\ln \left( a\right) \cdot \left( x-1\right) +\frac{a\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot \left( x-1\right)
^{2}+\frac{a\left[ \ln \left( a\right) \right] ^{3}}{3!}\cdot \left(
x-1\right) ^{3} \\
&&\vdots
\end{eqnarray*}などとなります。
指数関数に関するテイラーの定理(マクローリンの定理)
一般に、区間上に定義された関数\(f:\mathbb{R} \supset I\rightarrow \mathbb{R} \)が区間\(I\)において\(n\)階微分可能である場合にはテイラーの定理が成立するため、定義域の内点\(b\in I^{i}\)およびそれとは異なる定義域上の点\(x\in I\backslash \left\{ b\right\} \)をそれぞれ任意に選んだとき、それに対して、\begin{equation*}f\left( x\right) =P_{n-1,b}\left( x\right) +\frac{f^{\left( n\right) }\left(
b+\theta \left( x-b\right) \right) }{n!}\left( x-b\right) ^{n}
\end{equation*}を満たす実数\(\theta \in \left(0,1\right) \)が存在することが保証されます。ただし、\(P_{n-1,b}\left( x\right) \)は点\(b\)における\(n-1\)次のテイラー近似多項式です。
先に明らかになったように、全区間\(\mathbb{R} \)上に定義された指数関数はテイラーの定理が要求する条件を満たすため以下を得ます。
\end{equation*}と表されるものとする。点\(b\in \mathbb{R} \)およびそれとは異なる点\(x\in \mathbb{R} \backslash \left\{ b\right\} \)をそれぞれ任意に選んだとき、\begin{equation*}f\left( x\right) =P_{n-1,b}\left( x\right) +\frac{a^{b+\theta \left(
x-b\right) }\left[ \ln \left( a\right) \right] ^{n}}{n!}\cdot \left(
x-b\right) ^{n}
\end{equation*}を満たす実数\(\theta \in \left(0,1\right) \)が存在する。ただし、\(P_{n-1,b}\left( x\right) \)は点\(b\)における\(n-1\)次のテイラー近似多項式であり、\begin{equation*}P_{n-1,b}\left( x\right) =a^{b}+a^{b}\ln \left( a\right) \cdot \left(
x-b\right) +\frac{a^{b}\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot
\left( x-b\right) ^{2}+\cdots +\frac{a^{b}\left[ \ln \left( a\right) \right] ^{n-1}}{\left( n-1\right) !}\cdot \left( x-b\right) ^{n-1}
\end{equation*}である。
以上の命題より、点\(b\in \mathbb{R} \)を任意に選んだとき、その周辺の任意の点\(x\in \mathbb{R} \backslash \left\{ b\right\} \)において、\begin{equation*}f\left( x\right) \approx P_{n,b}\left( x\right)
\end{equation*}すなわち、\begin{equation*}
a^{x}\approx a^{b}+a^{b}\ln \left( a\right) \cdot \left( x-b\right) +\frac{a^{b}\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot \left( x-b\right)
^{2}+\cdots +\frac{a^{b}\left[ \ln \left( a\right) \right] ^{n}}{n!}\cdot
\left( x-b\right) ^{n}
\end{equation*}という近似関係が成り立つとともに、\(n\)を大きくするほど近似の精度が高くなることが明らかになりました。
点\(0\)は自然指数関数の定義域である全区間\(\mathbb{R} \)の内点であるため、自然指数関数にマクローリンの定理を適用できます。したがって以下を得ます。
\end{equation*}と表されるものとする。点\(0\)とは異なる点\(x\in \mathbb{R} \backslash \left\{ 0\right\} \)を任意に選んだとき、\begin{equation*}f\left( x\right) =P_{n-1,0}\left( x\right) +\frac{a^{\theta x}\left[ \ln
\left( a\right) \right] ^{n}}{n!}\cdot x^{n}
\end{equation*}を満たす実数\(\theta \in \left(0,1\right) \)が存在する。ただし、\(P_{n-1,0}\left( x\right) \)は点\(0\)における\(n-1\)次のテイラー近似多項式であり、\begin{equation*}P_{n-1,0}\left( x\right) =1+\ln \left( a\right) \cdot x+\frac{\left[ \ln
\left( a\right) \right] ^{2}}{2!}\cdot x^{2}+\cdots +\frac{\left[ \ln \left(
a\right) \right] ^{n-1}}{\left( n-1\right) !}\cdot x^{n-1}
\end{equation*}である。
以上の命題より、点\(0\)の周辺の任意の点\(x\in \mathbb{R} \backslash \left\{ 0\right\} \)において、\begin{equation*}f\left( x\right) \approx P_{n,0}\left( x\right)
\end{equation*}すなわち、\begin{equation*}
a^{x}\approx 1+\ln \left( a\right) \cdot x+\frac{\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot x^{2}+\cdots +\frac{\left[ \ln \left( a\right) \right]
^{n}}{n!}\cdot x^{n}
\end{equation*}という近似関係が成り立つとともに、\(n\)を大きくするほど近似の精度が高くなることが明らかになりました。
指数関数のテイラー展開(マクローリン展開)
底が\(e^{-1}\leq a\leq e\)を満たす指数関数\(a^{x}\)に関してはテイラーの定理が適用可能であるだけでなく、テイラー展開も可能です。まずはマクローリン展開可能であることを示します。
\end{equation*}と表されるものとする。点\(0\)とは異なる点\(x\in \mathbb{R} \backslash \left\{ 0\right\} \)を任意に選んだとき、\begin{eqnarray*}f\left( x\right) &=&1+\ln \left( a\right) \cdot x+\frac{\left[ \ln \left(
a\right) \right] ^{2}}{2!}\cdot x^{2}+\frac{\left[ \ln \left( a\right) \right] ^{3}}{3!}\cdot x^{3}+\cdots \\
&=&\sum_{k=0}^{\infty }\left\{ \frac{\left[ \ln \left( a\right) \right] ^{k}}{k!}\cdot x^{k}\right\}
\end{eqnarray*}という関係が成り立つ。
以上の命題を踏まえると、底が\(e^{-1}\leq a\leq e\)を満たす指数関数\(a^{x}\)がテイラー展開可能であることを示すことができます。
\end{equation*}と表されるものとする。点\(b\in \mathbb{R} \)およびそれとは異なる点\(x\in \mathbb{R} \backslash \left\{ b\right\} \)をそれぞれ任意に選んだとき、\begin{eqnarray*}f\left( x\right) &=&a^{b}+a^{b}\ln \left( a\right) \cdot \left( x-b\right) +\frac{a^{b}\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot \left(
x-b\right) ^{2}+\frac{a^{b}\left[ \ln \left( a\right) \right] ^{3}}{3!}\cdot
\left( x-b\right) ^{3}+\cdots \\
&=&\sum_{k=0}^{\infty }\left\{ \frac{a^{b}\left[ \ln \left( a\right) \right] ^{k}}{k!}\cdot \left( x-b\right) ^{k}\right\}
\end{eqnarray*}という関係が成り立つ。
テイラー展開を用いて数の近似値を求める
指数関数\(a^{x}\)の\(n\)次のマクローリン近似多項式は、\begin{eqnarray*}P_{n,0}\left( x\right) &=&1+\ln \left( a\right) \cdot x+\frac{\left[ \ln
\left( a\right) \right] ^{2}}{2!}\cdot x^{2}+\cdots +\frac{\left[ \ln \left(
a\right) \right] ^{n}}{n!}\cdot x^{n} \\
&=&\sum_{k=0}^{n}\left\{ \frac{\left[ \ln \left( a\right) \right] ^{k}}{k!}\cdot x^{k}\right\}
\end{eqnarray*}であるとともに、マクローリンの定理より、点\(0\)の周辺の任意の点\(x\in \mathbb{R} \backslash \left\{ 0\right\} \)において、\begin{equation*}a^{x}\approx P_{n,0}\left( x\right)
\end{equation*}という近似式が成り立ちます。さらに、\(e^{-1}\leq a\leq e\)かつ\(a\not=1\)を満たす底を持つ指数関数\(a^{x}\)はマクローリン展開可能であるため、究極的には、ゼロとは異なる点\(x\in \mathbb{R} \backslash \left\{ 0\right\} \)を任意に選んだときに、\begin{eqnarray*}a^{x} &=&1+\ln \left( a\right) \cdot x+\frac{\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot x^{2}+\frac{\left[ \ln \left( a\right) \right] ^{3}}{3!}\cdot x^{3}+\cdots \\
&=&\sum_{k=0}^{\infty }\left\{ \frac{\left[ \ln \left( a\right) \right] ^{k}}{k!}\cdot x^{k}\right\}
\end{eqnarray*}という関係が成り立ちます。
以上の議論において\(x\)の値を具体的に指定することにより、\(a^{x}\)の近似値を求めることができます。以下が具体例です。
&\approx &P_{n,0}\left( \frac{1}{2}\right) \\
&=&1+\ln \left( 2\right) \cdot \frac{1}{2}+\frac{\left[ \ln \left( 2\right) \right] ^{2}}{2!}\cdot \left( \frac{1}{2}\right) ^{2}+\cdots +\frac{\left[
\ln \left( a\right) \right] ^{n}}{n!}\cdot \left( \frac{1}{2}\right) ^{n} \\
&=&\sum_{k=0}^{n}\left[ \frac{\left[ \ln \left( 2\right) \right] ^{k}}{k!}\cdot \left( \frac{1}{2}\right) ^{k}\right] \end{eqnarray*}という近似関係が成り立つとともに、\(n\)が大きくなるほど近似の精度が高くなります。加えて、\(e^{-1}\leq 2\leq e\)より\(2^{x}\)はマクローリン展開可能であるため、点\(0\)とは異なる点である点\(\frac{1}{2}\)において、\begin{eqnarray*}\sqrt{2} &=&2^{\frac{1}{2}} \\
&=&\sum_{k=0}^{\infty }\left[ \frac{\left[ \ln \left( 2\right) \right] ^{k}}{k!}\cdot \left( \frac{1}{2}\right) ^{k}\right] \end{eqnarray*}という関係が成り立ちます。具体的には、\begin{eqnarray*}
\sqrt{2} &\approx &P_{1,0}\left( 1\right) =1+\ln \left( 2\right) \cdot \frac{1}{2}=1.3466 \\
\sqrt{2} &\approx &P_{2,0}\left( 1\right) =1+\ln \left( 2\right) \cdot \frac{1}{2}+\frac{\left[ \ln \left( 2\right) \right] ^{2}}{2!}\cdot \left( \frac{1}{2}\right) ^{2}=1.4066 \\
\sqrt{2} &\approx &P_{3,0}\left( 1\right) =1+\ln \left( 2\right) \cdot \frac{1}{2}+\frac{\left[ \ln \left( 2\right) \right] ^{2}}{2!}\cdot \left( \frac{1}{2}\right) ^{2}+\frac{\left[ \ln \left( 2\right) \right] ^{3}}{3!}\cdot
\left( \frac{1}{2}\right) ^{3}=1.4136 \\
&&\vdots
\end{eqnarray*}という近似関係が成り立つとともに、究極的には、\begin{eqnarray*}
\sqrt{2} &=&1+\ln \left( 2\right) \cdot \frac{1}{2}+\frac{\left[ \ln \left(
2\right) \right] ^{2}}{2!}\cdot \left( \frac{1}{2}\right) ^{2}+\frac{\left[
\ln \left( 2\right) \right] ^{3}}{3!}\cdot \left( \frac{1}{2}\right)
^{3}+\cdots \\
&=&1.4142
\end{eqnarray*}すなわち、\begin{equation*}
\sqrt{2}=1.4142
\end{equation*}となります。
テイラー展開を用いて関数の極限を求める
\(e^{-1}\leq a\leq e\)かつ\(a\not=1\)を満たす底を持つ指数関数\(a^{x}\)はマクローリン展開可能であるため、点\(0\)とは異なる点\(x\in \mathbb{R} \backslash \left\{ 0\right\} \)を任意に選んだときに、\begin{eqnarray*}a^{x} &=&1+\ln \left( a\right) \cdot x+\frac{\left[ \ln \left( a\right) \right] ^{2}}{2!}\cdot x^{2}+\frac{\left[ \ln \left( a\right) \right] ^{3}}{3!}\cdot x^{3}+\cdots \\
&=&\sum_{k=0}^{\infty }\left\{ \frac{\left[ \ln \left( a\right) \right] ^{k}}{k!}\cdot x^{k}\right\}
\end{eqnarray*}という関係が成り立ちます。関数\(f\)が指数関数を含む関数である場合、以上の関係を用いることにより、\(f\)を多項式関数や有理関数へ変換できます。したがって、そのような関数\(f\)の極限を求める際には、それを多項式関数や有理関数の極限に関する問題へ帰着させることができるということです。以下が具体例です。
\end{equation*}を定めるものとします。点\(0\)とは異なる任意の\(x\in \mathbb{R} \backslash \left\{ 0\right\} \)に関しては、\begin{eqnarray*}f\left( x\right) &=&\frac{\left( \frac{1}{2}\right) ^{x}-1}{x}\quad
\because f\text{の定義} \\
&=&\frac{1}{x}\left[ \left( 1+\ln \left( \frac{1}{2}\right) \cdot x+\frac{\left[ \ln \left( \frac{1}{2}\right) \right] ^{2}}{2!}\cdot x^{2}+\frac{\left[ \ln \left( \frac{1}{2}\right) \right] ^{3}}{3!}\cdot x^{3}+\cdots
\right) -1\right] \\
&=&\frac{1}{x}\left( \ln \left( \frac{1}{2}\right) \cdot x+\frac{\left[ \ln
\left( \frac{1}{2}\right) \right] ^{2}}{2!}\cdot x^{2}+\frac{\left[ \ln
\left( \frac{1}{2}\right) \right] ^{3}}{3!}\cdot x^{3}+\cdots \right) \\
&=&\ln \left( \frac{1}{2}\right) +\frac{\left[ \ln \left( \frac{1}{2}\right) \right] ^{2}}{2!}\cdot x+\frac{\left[ \ln \left( \frac{1}{2}\right) \right] ^{3}}{3!}\cdot x^{2}+\cdots
\end{eqnarray*}という関係が成り立つため、例えば、\begin{eqnarray*}
\lim_{x\rightarrow 0}f\left( x\right) &=&\lim_{x\rightarrow 0}\left( \ln
\left( \frac{1}{2}\right) +\frac{\left[ \ln \left( \frac{1}{2}\right) \right] ^{2}}{2!}\cdot x+\frac{\left[ \ln \left( \frac{1}{2}\right) \right] ^{3}}{3!}\cdot x^{2}+\cdots \right) \\
&=&\ln \left( \frac{1}{2}\right)
\end{eqnarray*}が成り立ちます。
演習問題
\pi
\end{equation*}の近似値を求めてください。
プレミアム会員専用コンテンツです
【ログイン】【会員登録】