教材一覧
教材一覧
教材検索

ユークリッド位相

ユークリッド空間における基本開集合系(開基)と第2可算公理

目次

Twitterで共有
メールで共有

基本開集合系

ユークリッド空間の点\(a\in \mathbb{R} ^{n}\)と正の実数\(\varepsilon >0\)がそれぞれ与えられたとき、点\(a\)を中心とする半径\(\varepsilon \)の近傍は、\begin{eqnarray*}N_{\varepsilon }\left( a\right) &=&\left\{ x\in \mathbb{R} ^{n}\ |\ d\left( x,a\right) <\varepsilon \right\} \quad \because \text{近傍の定義} \\
&=&\left\{ x\in \mathbb{R} ^{n}\ |\ \sqrt{\sum_{i=1}^{n}\left( x_{i}-a_{i}\right) ^{2}}<\varepsilon
\right\} \quad \because \text{ユークリッド距離の定義}
\end{eqnarray*}と定義される\(\mathbb{R} ^{n}\)の部分集合です。点\(a\)の近傍をすべて集めてできる\(\mathbb{R} ^{n}\)の部分集合族を点\(a\)の近傍系と呼び、これを、\begin{equation*}N\left( a\right) =\left\{ N_{\varepsilon }\left( a\right) \ |\ 0<\varepsilon
<+\infty \right\}
\end{equation*}で表記します。

\(\mathbb{R} ^{n}\)の部分集合\(A\)が\(\mathbb{R} ^{n}\)上の開集合であることとは、\(A\)の点\(a\)を任意に選んだときに、\(A\)の部分集合であるような\(a\)の近傍が存在すること、すなわち、\begin{equation*}\forall a\in A,\ \exists \varepsilon >0:N_{\varepsilon }\left( a\right)
\subset A
\end{equation*}が成り立つこととして定義されます。同じことを点の近傍系を用いて表現すると、\begin{equation*}
\forall a\in A,\ \exists N\in N\left( a\right) :N\subset A
\end{equation*}となります。また、\(\mathbb{R} ^{n}\)上の開集合をすべて集めてできる集合族を\(\mathbb{R} ^{n}\)の開集合系と呼び、これを\(\mathcal{O}\)で表記します。

\(\mathbb{R} ^{n}\)の開集合系\(\mathcal{O}\)の部分集合族\(\mathfrak{B}\)が与えられたとき、\(\mathbb{R} ^{n}\)上のそれぞれの開集合\(A\in \mathcal{O}\)を\(\mathfrak{B}\)の要素の和集合として表すことができるのであれば、すなわち、以下の条件\begin{equation*}\forall A\in \mathcal{O}\ ,\exists \mathfrak{B}^{\prime }\subset \mathfrak{B}:A=\bigcup \mathfrak{B}^{\prime }
\end{equation*}を満たす開集合族\(\mathfrak{B}\subset \mathcal{O}\)が存在する場合には、\(\mathfrak{B}\)を\(\mathcal{O}\)の基本開集合系(fundamental systemof open sets)や開基(open base)などと呼びます。上の定義中の\(\mathfrak{B}^{\prime }\)は\(\mathfrak{B}\)の「部分集合」を表す記号であることに注意してください。集合\(A\)を集合族\(\mathfrak{B}\)の要素の和集合として表すことができることとは、\(A\)を\(\mathfrak{B}\)の部分集合の和集合として表すことができることと同義であるため、上のような表現になっています。

例(開集合系は基本開集合系)
\(\mathbb{R} ^{n}\)の開集合系\(\mathcal{O}\)は明らかに\(\mathcal{O}\)の基本開集合系です。なぜなら、\(\mathcal{O}\)は\(\mathcal{O}\)自身の部分集合であるとともに、開集合\(A\in \mathcal{O}\)を任意に選んだときに\(\mathcal{O}\)の部分集合\(\left\{ A\right\} \subset \mathcal{O}\)をとることができ、これが、\begin{equation*}A=\bigcup \left\{ A\right\}
\end{equation*}を満たすからです。

例(近傍系は基本開集合系)
点\(a\in \mathbb{R} ^{n}\)の近傍系は、\begin{equation*}N\left( a\right) =\left\{ N_{\varepsilon }\left( a\right) \ |\ 0<\varepsilon
<+\infty \right\}
\end{equation*}と定義されますが、\(\mathbb{R} ^{n}\)のすべての点のすべての近傍からなる集合を\(\mathbb{R} ^{n}\)の近傍系と呼び、これを、\begin{equation*}\mathcal{N}=\left\{ N_{\varepsilon }\left( a\right) \ |\ a\in \mathbb{R} ^{n}\wedge 0<\varepsilon <+\infty \right\}
\end{equation*}で表記します。任意の近傍\(N_{\varepsilon }\left( a\right) \)は\(\mathbb{R} ^{n}\)上の開集合であるため\(\mathcal{N}\)は\(\mathcal{O}\)の部分集合であり、したがって\(\mathcal{N}\subset \mathcal{O}\)が成り立ちます。加えて、\(\mathcal{N}\)は\(\mathcal{O}\)の基本開集合系でもあります(演習問題)。つまり、任意の開集合は近傍の和集合として表すことができます。
例(中心と半径が有理数の近傍系は基本開集合系)
中心\(a\)が有理数を成分として持つ\(\mathbb{Q} ^{n}\)上の点であり、半径\(\varepsilon \)が有理数であるような近傍を集めてできる近傍系を、\begin{equation*}\mathcal{N}_{\mathbb{Q} }=\left\{ N_{\varepsilon }\left( a\right) \ |\ a\in \mathbb{Q} ^{n}\wedge \varepsilon \in \mathbb{Q} \wedge 0<\varepsilon <+\infty \right\}
\end{equation*}で表記します。任意の近傍\(N_{\varepsilon }\left( a\right) \)は\(\mathbb{R} ^{n}\)上の開集合であるため\(\mathcal{N}\)は\(\mathcal{O}\)の部分集合であり、したがって\(\mathcal{N}_{\mathbb{Q} }\subset \mathcal{O}\)が成り立ちます。加えて、\(\mathcal{N}_{\mathbb{Q} }\)は\(\mathcal{O}\)の基本開集合系でもあります(演習問題)。つまり、任意の開集合は\(\mathcal{N}_{\mathbb{Q} }\)の要素であるような近傍の和集合として表すことができます。

開集合系\(\mathcal{O}\)の基本開集合系\(\mathfrak{B}\)が存在する場合、どのようなメリットがあるのでしょうか。開集合系\(\mathcal{O}\)の基本開集合系\(\mathfrak{B}\)が存在する場合、任意の開集合\(A\in \mathcal{O}\)は基本開集合系\(\mathfrak{B}\)に属する開集合の和集合として表すことができます。つまり、基本開集合系\(\mathfrak{B}\)さえ与えられていれば、それをもとに任意の開集合を表現できるため、開集合について議論する際に開集合系\(\mathcal{O}\)のすべての要素を議論の対象とする必要はなく、基本開集合系\(\mathfrak{B}\)の要素だけを議論の対象とすれば十分です。基本開集合系が存在する場合、議論の対象とすべき開集合の数を減らすことができるため、それにより議論を簡素化できるということです。

 

第2可算公理

ユークリッド空間\(\mathbb{R} ^{n}\)の開集合系\(\mathcal{O}\)の基本開集合系\(\mathfrak{B}\)の中に可算集合であるような者が存在する場合、\(\mathbb{R} ^{n}\)は第2可算公理(second axiom of countability)を満たすと言います。

繰り返しになりますが、開集合系\(\mathcal{O}\)の基本開集合系\(\mathfrak{B}\)が存在する場合には、任意の開集合\(A\in \mathcal{O}\)が基本開集合系\(\mathfrak{B}\)の要素の和集合として表されるため、開集合について議論する際に\(\mathcal{O}\)に属するすべての開集合を議論の対象とする必要はなく、基本開集合系\(\mathfrak{B}\)に属する開集合だけを議論の対象とすれば十分です。しかも、第2可算公理が成り立つ場合には、可算集合であるような基本開集合系\(\mathfrak{B}\)が存在することが保証されるため、この場合、可算個の開集合だけを議論の対象とすれば十分です。

先に例を通じて確認したように、中心が有理数を成分とする点であり半径が有理数であるような近傍をすべて集めてできる近傍系\begin{equation*}
\mathcal{N}_{\mathbb{Q} }=\left\{ N_{\varepsilon }\left( a\right) \ |\ a\in \mathbb{Q} ^{n}\wedge \varepsilon \in \mathbb{Q} \wedge 0<\varepsilon <+\infty \right\}
\end{equation*}は\(\mathcal{O}\)の基本開集合系です。しかも、\(\mathcal{N}_{\mathbb{Q} }\)は可算集合族です(演習問題)。以上の事実は\(\mathbb{R} ^{n}\)が第2可算公理を満たすことを意味します。

命題(第2可算公理)
ユークリッド空間\(\mathbb{R} ^{n}\)は第2可算公理を満たす。具体的には、以下の集合族\begin{equation*}\mathcal{N}_{\mathbb{Q} }=\left\{ N_{\varepsilon }\left( a\right) \ |\ a\in \mathbb{Q} ^{n}\wedge \varepsilon \in \mathbb{Q} \wedge 0<\varepsilon <+\infty \right\}
\end{equation*}は\(\mathbb{R} ^{n}\)の開集合系\(\mathcal{O}\)の基本開集合系であるような可算集合である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

 

第1可算公理と第2可算公理の関係

点\(a\in \mathbb{R} ^{n}\)を任意に選んだ上で、その近傍系\(N\left( a\right) \)をとります。このとき、この近傍系の部分集合\(N^{\ast }\left( a\right) \subset N\left( a\right) \)の中に以下の条件\begin{equation*}\forall N\in N\left( a\right) ,\ \exists N^{\ast }\in N^{\ast }\left(
a\right) :N^{\ast }\subset N
\end{equation*}を満たすものが存在する場合、このような集合族\(N^{\ast }\left( a\right) \)を点\(a\)の基本近傍系と呼びます。加えて、可算個の要素を持つ基本近傍系\(N^{\ast }\left( a\right) \)が存在する場合、\(\mathbb{R} ^{n}\)は第1可算公理を満たすと言います。

\(\mathbb{R} ^{n}\)が第1可算公理を導くことを示しましたが、実は、第1可算公理は第2可算公理から導くこともできます。

命題(第1可算公理と第2可算公理の関係)
実数空間\(\mathbb{R} ^{n}\)は第2可算公理を満たす。この場合、\(\mathbb{R} ^{n}\)は第1可算公理を満たす。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

 

演習問題

問題(近傍系は基本開集合系)
\(\mathbb{R} ^{n}\)の近傍系\begin{equation*}\mathcal{N}=\left\{ N_{\varepsilon }\left( a\right) \ |\ a\in \mathbb{R} ^{n}\wedge 0<\varepsilon <+\infty \right\}
\end{equation*}が\(\mathcal{O}\)の基本開集合系であることを示してください。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(基本開集合系であるための必要十分条件)
ユークリッド空間\(\mathbb{R} ^{n}\)の開集合系\(\mathcal{O}\)の部分集合\(\mathfrak{B}\)が基本開集合系であることとは、\begin{equation*}\forall A\in \mathcal{O}\ ,\exists \mathfrak{B}^{\prime }\subset \mathfrak{B}:A=\bigcup \mathfrak{B}^{\prime }
\end{equation*}が成り立つこととして定義されますが、この条件は以下の命題\begin{equation*}
\forall A\in \mathcal{O}\ ,\forall a\in A,\ \exists B\in \mathfrak{B}:a\in
B\subset A
\end{equation*}と必要十分であることを示してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録