単関数の標準形どうしの和のルベーグ積分
ユークリッド空間\(\mathbb{R} ^{n}\)および\(\mathbb{R} ^{n}\)上のルベーグ可測集合族\(\mathfrak{M}_{\mu }\)に加えてルベーグ測度\(\mu :\mathfrak{M}_{\mu }\rightarrow \mathbb{R} _{+}\cup \left\{ +\infty \right\} \)からなる測度空間\begin{equation*}\left( \mathbb{R} ^{n},\mathfrak{M}_{\mu },\mu \right)
\end{equation*}が与えられているものとします。有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)を任意に選びます。つまり、\begin{equation*}0\leq \mu \left( X\right) <+\infty
\end{equation*}が成り立つということです。その上で、\(X\)を定義域とする多変数の単関数\begin{equation*}f:\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \end{equation*}が与えられているものとします。つまり、\(f\)はルベーグ可測関数であるとともに、その値域が有限集合\begin{eqnarray*}f\left( X\right) &=&\left\{ f\left( \boldsymbol{x}\right) \in \mathbb{R} \ |\ \boldsymbol{x}\in X\right\} \\
&=&\left\{ a_{1},\cdots ,a_{K}\right\}
\end{eqnarray*}であるということです。
単関数\(f\)の値域に属するそれぞれの値\(a_{k}\in f\left(X\right) \)に対して、\(f\)による集合\(\left\{ a_{k}\right\} \)の逆像を、\begin{equation*}\left\{ f=a_{k}\right\} =\left\{ \boldsymbol{x}\in X\ |\ f\left( \boldsymbol{x}\right) =a_{k}\right\}
\end{equation*}と表記し、さらに集合\(\left\{ f=a_{k}\right\} \)に関する特性関数を\begin{equation*}\chi _{\left\{ f=a_{k}\right\} }:\mathbb{R} ^{n}\supset X\rightarrow \left\{ 0,1\right\}
\end{equation*}で表記します。つまり、\(\chi _{\left\{ f=a_{k}\right\} }\)がそれぞれの\(\boldsymbol{x}\in X\)に対して定める値は、\begin{equation*}\chi _{\left\{ f=a_{k}\right\} }\left( \boldsymbol{x}\right) =\left\{
\begin{array}{cl}
1 & \left( if\ f\left( \boldsymbol{x}\right) =a_{k}\right) \\
0 & \left( if\ f\left( \boldsymbol{x}\right) \not=a_{k}\right)
\end{array}\right.
\end{equation*}です。単関数\(f\)の標準形とは、\begin{equation*}\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right) :\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \end{equation*}と定義される関数ですが、これはもとの単関数\(f\)と一致します。つまり、以下の関係\begin{equation*}f=\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right)
\end{equation*}が成り立つため、単関数\(f\)がそれぞれの\(\boldsymbol{x}\in X\)に対して定める値は、\begin{eqnarray*}f\left( \boldsymbol{x}\right) &=&\left( \sum_{k=1}^{K}\left( a_{k}\cdot
\chi _{\left\{ f=a_{k}\right\} }\right) \right) \left( \boldsymbol{x}\right)
\\
&=&\sum_{k=1}^{K}\left[ a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\left(
\boldsymbol{x}\right) \right] \\
&=&a_{1}\cdot \chi _{\left\{ f=a_{1}\right\} }\left( \boldsymbol{x}\right)
+\cdots +a_{K}\cdot \chi _{\left\{ f=a_{K}\right\} }\left( \boldsymbol{x}\right)
\end{eqnarray*}となります。さらに、\(f\)の\(X\)上におけるルベーグ積分は有限な実数として定まるとともに、その値は、\begin{equation*}\int_{X}fd\mu =\sum_{k=1}^{K}\left[ a_{k}\cdot \mu \left( \left\{
f=a_{k}\right\} \right) \right]
\end{equation*}と定まります。
ユークリッド空間\(\mathbb{R} ^{n}\)上の有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された2つの単関数\begin{eqnarray*}f &:&\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \\
g &:&\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \end{eqnarray*}の値域が、\begin{eqnarray*}
f\left( X\right) &=&\left\{ a_{1},\cdots ,a_{K}\right\} \\
g\left( X\right) &=&\left\{ b_{1},\cdots ,b_{L}\right\}
\end{eqnarray*}である場合、これらの標準形は、\begin{eqnarray*}
f &=&\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right)
\\
g &=&\sum_{l=1}^{L}\left( b_{l}\cdot \chi _{\left\{ g=b_{l}\right\} }\right)
\end{eqnarray*}となります。以上の状況において多変数関数\begin{equation*}
f+g:\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \end{equation*}を定義すると、これはそれぞれの\(\boldsymbol{x}\in X\)に対して、\begin{eqnarray*}\left( f+g\right) \left( \boldsymbol{x}\right) &=&f\left( \boldsymbol{x}\right) +g\left( \boldsymbol{x}\right) \quad \because f+g\text{の定義} \\
&=&\left( \sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\}
}\right) \right) \left( \boldsymbol{x}\right) +\left( \sum_{l=1}^{L}\left(
b_{l}\cdot \chi _{\left\{ g=b_{l}\right\} }\right) \right) \left(
\boldsymbol{x}\right) \quad \because f,g\text{の定義} \\
&=&\sum_{k=1}^{K}\left[ a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\left(
\boldsymbol{x}\right) \right] +\sum_{l=1}^{L}\left[ b_{l}\cdot \chi
_{\left\{ g=b_{l}\right\} }\left( \boldsymbol{x}\right) \right]
\end{eqnarray*}を定めますが、この関数\(f+g\)は単関数になることが保証されます。さらに、\(f+g\)は\(X\)上においてルベーグ積分可能であり、これと関数\(f,g\)の\(X\)上におけるルベーグ積分の間には以下の関係\begin{equation*}\int_{X}\left( f+g\right) d\mu =\int_{X}fd\mu +\int_{X}gd\mu
\end{equation*}が成り立つことが保証されます。つまり、単関数\(f,g\)のルベーグ積分どうしの和をとれば、それは単関数\(f+g\)のルベーグ積分と一致します。
\\
g &=&\sum_{l=1}^{L}\left( b_{l}\cdot \chi _{\left\{ g=b_{l}\right\} }\right)
\end{eqnarray*}であるものとする。関数\(f+g:\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \)を定義すると、これもまた単関数であるとともに、以下の関係\begin{equation*}\int_{X}\left( f+g\right) d\mu =\int_{X}fd\mu +\int_{X}gd\mu
\end{equation*}が成り立つ。
単関数どうしの和のルベーグ積分
ユークリッド空間\(\mathbb{R} ^{n}\)上のルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された多変数関数\(f:\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \)が、以下の条件\begin{equation*}X=\bigsqcup\limits_{k=1}^{K}A_{k}
\end{equation*}を満たす有限個の互いに素な何らかのルベーグ可測集合\(A_{1},\cdots,A_{K}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots,a_{K}\in \mathbb{R} \)を用いて、\begin{equation*}f=\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}}\right)
\end{equation*}と表されることは、\(f\)が単関数であるための必要十分条件です。さらに、以上のように表現された単関数\(f\)の\(X\)上におけるルベーグ積分は有限な実数として定まるとともに、その値は、\begin{equation*}\int_{X}fd\mu =\sum_{k=1}^{K}\left[ a_{k}\cdot \mu \left( A_{k}\right) \right]
\end{equation*}と定まります。
ユークリッド空間\(\mathbb{R} ^{n}\)上の有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された2つの単関数\begin{eqnarray*}f &:&\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \\
g &:&\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \end{eqnarray*}が、以下の条件\begin{eqnarray*}
X &=&\bigsqcup\limits_{k=1}^{K}A_{k} \\
Y &=&\bigsqcup\limits_{l=1}^{L}B_{l}
\end{eqnarray*}を満たすルベーグ可測集合\(A_{1},\cdots ,A_{K},B_{1},\cdots ,B_{L}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots,a_{K},b_{1},\cdots ,b_{L}\in \mathbb{R} \)を用いて、\begin{eqnarray*}f &=&\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}}\right) \\
g &=&\sum_{l=1}^{L}\left( b_{l}\cdot \chi _{B_{l}}\right)
\end{eqnarray*}と表される状況を想定します。関数\begin{equation*}
f+g:\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \end{equation*}を定義すると、これはそれぞれの\(\boldsymbol{x}\in X\)に対して、\begin{eqnarray*}\left( f+g\right) \left( \boldsymbol{x}\right) &=&f\left( \boldsymbol{x}\right) +g\left( \boldsymbol{x}\right) \quad \because f+g\text{の定義} \\
&=&\left( \sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}}\right) \right)
\left( \boldsymbol{x}\right) +\left( \sum_{l=1}^{L}\left( b_{l}\cdot \chi
_{B_{l}}\right) \right) \left( \boldsymbol{x}\right) \quad \because f,g\text{の定義} \\
&=&\sum_{k=1}^{K}\left[ \left( a_{k}\cdot \chi _{A_{k}}\right) \left(
\boldsymbol{x}\right) \right] +\sum_{l=1}^{L}\left[ \left( b_{l}\cdot \chi
_{B_{l}}\right) \left( \boldsymbol{x}\right) \right]
\end{eqnarray*}を定めますが、この関数\(f+g\)もまた単関数になることが保証されます。さらに、\(f+g\)は\(X\)上においてルベーグ積分可能であり、これと関数\(f,g\)の\(X\)上におけるルベーグ積分の間には以下の関係\begin{equation*}\int_{X}\left( f+g\right) d\mu =\int_{X}fd\mu +\int_{X}gd\mu
\end{equation*}が成り立つことが保証されます。つまり、単関数\(f,g\)のルベーグ積分どうしの和をとれば、それは単関数\(f+g\)のルベーグ積分と一致します。
Y &=&\bigsqcup\limits_{l=1}^{L}B_{l}
\end{eqnarray*}を満たすルベーグ可測集合\(A_{1},\cdots ,A_{K},B_{1},\cdots ,B_{L}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots,a_{K},b_{1},\cdots ,b_{L}\in \mathbb{R} \)を用いて、\begin{eqnarray*}f &=&\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}}\right) \\
g &=&\sum_{l=1}^{L}\left( b_{l}\cdot \chi _{B_{l}}\right)
\end{eqnarray*}と表されるものとする。関数\(f+g:\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \)を定義すると、これもまた単関数であるとともに、以下の関係\begin{equation*}\int_{X}\left( f+g\right) d\mu =\int_{X}fd\mu +\int_{X}gd\mu
\end{equation*}が成り立つ。
結論をまとめます。
\end{equation*}が成り立つ。
g &:&\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \end{eqnarray*}が与えられているものとします。実数\(\alpha,\beta \in \mathbb{R} \)を任意に選んだ上で、以下の関数\begin{equation*}\alpha f+\beta g:\mathbb{R} ^{n}\supset X\rightarrow \mathbb{R} \end{equation*}を定義します。すると、\begin{eqnarray*}
\int_{X}\left( \alpha f+\beta g\right) d\mu &=&\int_{X}\alpha fd\mu
+\int_{X}\beta gd\mu \quad \because \text{単関数の和のルベーグ積分} \\
&=&\alpha \int_{X}fd\mu +\beta \int_{X}gd\mu \quad \because \text{単関数の定数倍のルベーグ積分}
\end{eqnarray*}すなわち、\begin{equation*}
\int_{X}\left( \alpha f+\beta g\right) d\mu =\alpha \int_{X}fd\mu +\beta
\int_{X}gd\mu
\end{equation*}を得ます。以上の性質を単関数のルベーグ積分の線形性(linearity)と呼びます。
プレミアム会員専用コンテンツです
【ログイン】【会員登録】