単関数の標準形のルベーグ積分の加法性
実数空間\(\mathbb{R} \)および\(\mathbb{R} \)上のルベーグ可測集合族\(\mathfrak{M}_{\mu }\)に加えてルベーグ測度\(\mu :\mathfrak{M}_{\mu }\rightarrow \mathbb{R} _{+}\cup \left\{ +\infty \right\} \)からなる測度空間\begin{equation*}\left( \mathbb{R} ,\mathfrak{M}_{\mu },\mu \right)
\end{equation*}が与えられているものとします。有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)を任意に選びます。つまり、\begin{equation*}0\leq \mu \left( X\right) <+\infty
\end{equation*}が成り立つということです。その上で、\(X\)を定義域とする単関数\begin{equation*}f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}が与えられているものとします。つまり、\(f\)はルベーグ可測関数であるとともに、その値域が有限集合\begin{eqnarray*}f\left( X\right) &=&\left\{ f\left( x\right) \in \mathbb{R} \ |\ x\in X\right\} \\
&=&\left\{ a_{1},\cdots ,a_{K}\right\}
\end{eqnarray*}であるということです。
単関数\(f\)の値域に属するそれぞれの値\(a_{k}\in f\left(X\right) \)に対して、\(f\)による集合\(\left\{ a_{k}\right\} \)の逆像を、\begin{equation*}\left\{ f=a_{k}\right\} =\left\{ x\in X\ |\ f\left( x\right) =a_{k}\right\}
\end{equation*}と表記し、さらに集合\(\left\{ f=a_{k}\right\} \)に関する特性関数を\begin{equation*}\chi _{\left\{ f=a_{k}\right\} }:\mathbb{R} \supset X\rightarrow \left\{ 0,1\right\}
\end{equation*}で表記します。つまり、\(\chi _{\left\{ f=a_{k}\right\} }\)がそれぞれの\(x\in X\)に対して定める値は、\begin{equation*}\chi _{\left\{ f=a_{k}\right\} }\left( x\right) =\left\{
\begin{array}{cl}
1 & \left( if\ f\left( x\right) =a_{k}\right) \\
0 & \left( if\ f\left( x\right) \not=a_{k}\right)
\end{array}\right.
\end{equation*}です。単関数\(f\)の標準形とは、\begin{equation*}\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right) :\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}と定義される関数ですが、これはもとの単関数\(f\)と一致します。つまり、以下の関係\begin{equation*}f=\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right)
\end{equation*}が成り立つため、単関数\(f\)がそれぞれの\(x\in X\)に対して定める値は、\begin{eqnarray*}f\left( x\right) &=&\left( \sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{
f=a_{k}\right\} }\right) \right) \left( x\right) \\
&=&\sum_{k=1}^{K}\left[ a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\left(
x\right) \right] \\
&=&a_{1}\cdot \chi _{\left\{ f=a_{1}\right\} }\left( x\right) +\cdots
+a_{K}\cdot \chi _{\left\{ f=a_{K}\right\} }\left( x\right)
\end{eqnarray*}となります。さらに、\(f\)の\(X\)上におけるルベーグ積分は有限な実数として定まるとともに、その値は、\begin{equation*}\int_{X}fd\mu =\sum_{k=1}^{K}\left[ a_{k}\cdot \mu \left( \left\{
f=a_{k}\right\} \right) \right]
\end{equation*}と定まります。
有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)に定義された単関数\begin{equation*}f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}が与えられているものとします。\(f\)の値域が、\begin{equation*}f\left( X\right) =\left\{ a_{1},\cdots ,a_{K}\right\}
\end{equation*}である場合、\(f\)の標準形が、\begin{equation*}f=\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right)
\end{equation*}と定まります。\(X\)の部分集合であるような互いに素な2つのルベーグ可測集合\(A,B\in \mathfrak{M}_{\mu }\)を任意に選びます。つまり、\begin{equation*}X=A\sqcup B
\end{equation*}が成り立つということです。\(f\)の定義域を\(A\)ないし\(B\)へ制限することにより得られる関数を、\begin{eqnarray*}f_{A} &:&\mathbb{R} \supset A\rightarrow \mathbb{R} \\
f_{B} &:&\mathbb{R} \supset B\rightarrow \mathbb{R} \end{eqnarray*}とそれぞれ表記するのであれば、以下の関係\begin{eqnarray*}
f_{A} &=&\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} \cap
A}\right) \\
f_{B} &=&\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} \cap
B}\right)
\end{eqnarray*}が成り立つため、\(f_{A},f_{B}\)はともに単関数になります。しかも、これらの関数のルベーグ積分の間には以下の関係\begin{equation*}\int_{X}fd\mu =\int_{A}f_{A}d\mu +\int_{B}f_{B}d\mu
\end{equation*}すなわち、\begin{equation*}
\int_{A\sqcup B}fd\mu =\int_{A}f_{A}d\mu +\int_{B}f_{B}d\mu
\end{equation*}が成り立ちます。ただし、\(f_{A}\)の\(A\)上のルベーグ積分は\(f\)の\(A\)上のルベーグ積分と一致し、\(f_{B}\)の\(B\)上のルベーグ積分は\(f\)の\(B\)上のルベーグ積分と一致するため、すなわち、\begin{eqnarray*}\int_{A}f_{A}d\mu &=&\int_{A}fd\mu \\
\int_{B}f_{B}d\mu &=&\int_{B}fd\mu
\end{eqnarray*}が成り立つため、先の関係を、\begin{equation*}
\int_{A\sqcup B}fd\mu =\int_{A}fd\mu +\int_{B}fd\mu
\end{equation*}と表現できます。つまり、ルベーグ可測集合を2つのルベーグ可測集合に分割した場合、個々の集合におけるルベーグ積分の和をとればもとの集合におけるルベーグ積分の値が得られるということです。以上の性質を単関数のルベーグ積分に関する加法性(additivity)と呼びます。
\end{equation*}であるものとする。以下の条件\begin{equation*}
X=A\sqcup B
\end{equation*}を満たす互いに素な2つのルベーグ可測集合\(A,B\in \mathfrak{M}_{\mu }\)を任意に選んだとき、以下の関係\begin{equation*}\int_{A\sqcup B}fd\mu =\int_{A}fd\mu +\int_{B}fd\mu
\end{equation*}が成り立つ。
単関数のルベーグ積分の加法性
実数空間\(\mathbb{R} \)上のルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} \)が、以下の条件\begin{equation*}X=\bigsqcup\limits_{k=1}^{K}A_{k}
\end{equation*}を満たす有限個の互いに素な何らかのルベーグ可測集合\(A_{1},\cdots,A_{K}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots,a_{K}\in \mathbb{R} \)を用いて、\begin{equation*}f=\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}}\right)
\end{equation*}と表されることは、\(f\)が単関数であるための必要十分条件です。さらに、以上のように表現された単関数\(f\)の\(X\)上におけるルベーグ積分は有限な実数として定まるとともに、その値は、\begin{equation*}\int_{X}fd\mu =\sum_{k=1}^{K}\left[ a_{k}\cdot \mu \left( A_{k}\right) \right]
\end{equation*}と定まります。
有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)に定義された単関数\begin{equation*}f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}が、以下の条件\begin{equation*}
X=\bigsqcup\limits_{k=1}^{K}A_{k}
\end{equation*}を満たす有限個の互いに素な何らかのルベーグ可測集合\(A_{1},\cdots,A_{K}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots,a_{K}\in \mathbb{R} \)を用いて、\begin{equation*}f=\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}}\right)
\end{equation*}と表されるものとします。\(X\)の部分集合であるような互いに素な2つのルベーグ可測集合\(A,B\in \mathfrak{M}_{\mu }\)を任意に選びます。つまり、\begin{equation*}X=A\sqcup B
\end{equation*}が成り立つということです。\(f\)の定義域を\(A\)ないし\(B\)へ制限することにより得られる関数を、\begin{eqnarray*}f_{A} &:&\mathbb{R} \supset A\rightarrow \mathbb{R} \\
f_{B} &:&\mathbb{R} \supset B\rightarrow \mathbb{R} \end{eqnarray*}とそれぞれ表記するのであれば、以下の関係\begin{eqnarray*}
f_{A} &=&\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}\cap A}\right) \\
f_{B} &=&\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}\cap B}\right)
\end{eqnarray*}が成り立つため、\(f_{A},f_{B}\)はともに単関数になります。しかも、これらの関数のルベーグ積分の間には以下の関係\begin{equation*}\int_{X}fd\mu =\int_{A}f_{A}d\mu +\int_{B}f_{B}d\mu
\end{equation*}すなわち、\begin{equation*}
\int_{A\sqcup B}fd\mu =\int_{A}f_{A}d\mu +\int_{B}f_{B}d\mu
\end{equation*}が成り立ちます。ただし、\(f_{A}\)の\(A\)上のルベーグ積分は\(f\)の\(A\)上のルベーグ積分と一致し、\(f_{B}\)の\(B\)上のルベーグ積分は\(f\)の\(B\)上のルベーグ積分と一致するため、すなわち、\begin{eqnarray*}\int_{A}f_{A}d\mu &=&\int_{A}fd\mu \\
\int_{B}f_{B}d\mu &=&\int_{B}fd\mu
\end{eqnarray*}が成り立つため、先の関係を、\begin{equation*}
\int_{A\sqcup B}fd\mu =\int_{A}fd\mu +\int_{B}fd\mu
\end{equation*}と表現できます。
\end{equation*}を満たすルベーグ可測集合\(A_{1},\cdots ,A_{K}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots ,a_{K}\in \mathbb{R} \)を用いて、\begin{equation*}f=\sum_{k=1}^{K}\left( a_{k}\cdot \chi _{A_{k}}\right)
\end{equation*}と表されるものとする。以下の条件\begin{equation*}
X=A\sqcup B
\end{equation*}を満たす互いに素な2つのルベーグ可測集合\(A,B\in \mathfrak{M}_{\mu }\)を任意に選んだとき、以下の関係\begin{equation*}\int_{A\sqcup B}fd\mu =\int_{A}fd\mu +\int_{B}fd\mu
\end{equation*}が成り立つ。
結論をまとめます。
\end{equation*}を満たす互いに素な2つのルベーグ可測集合\(A,B\in \mathfrak{M}_{\mu }\)を任意に選んだとき、以下の関係\begin{equation*}\int_{A\sqcup B}fd\mu =\int_{A}fd\mu +\int_{B}fd\mu
\end{equation*}が成り立つ。
プレミアム会員専用コンテンツです
【ログイン】【会員登録】