WIIS

ルベーグ測度

区間の集合族

目次

前のページ:
次のページ:

区間の長さ

Twitter
Mailで保存

測度を導入する場としての部分集合族

数直線\(\mathbb{R} \)における区間の長さ、平面\(\mathbb{R} ^{2}\)における長方形の面積、空間\(\mathbb{R} ^{3}\)における直方体の体積などはいずれも同一種類の小さい量を加え合わせることでより大きな量を作り出すことができるという意味において外延的な量です。例えば、数直線\(\mathbb{R} \)上の区間を複数の小さい区間に分割した上で、得られた小区間の長さを足し合わせればもとの区間の長さが得られます。したがって、区間の長さは外延量を表す概念です。平面\(\mathbb{R} ^{2}\)における長方形の面積や、空間\(\mathbb{R} ^{3}\)における直方体の体積などについても同様です。

では、一般に、外延量という概念をどのような数学的対象として表現できるでしょうか。数直線\(\mathbb{R} \)における区間の長さに話を戻すと、個々の区間は\(\mathbb{R} \)の部分集合であるため、ある区間の長さと、その区間を分割して得られる小区間の長さの関係は、\(\mathbb{R} \)の部分集合どうしの外延量の関係として捉えることができます。つまり、「区間の長さ」という外延量は\(\mathbb{R} \)の部分集合族上に導入される概念であるということです。同様に、「長方形の体積」は\(\mathbb{R} ^{2}\)の部分集合族上に、「立方体の体積」は\(\mathbb{R} ^{3}\)の部分集合族上にそれぞれ導入されます。

以上の議論を一般化すると、私たちが外延量を測定しようとする対象は常に何らかの集合の部分集合であり、そのような部分集合を集めてできる集合族において外延量は導入されるということです。一般に、外延量は測度(measure)と呼ばれる概念として定式化されます。本稿の目的は測度について解説することですが、まずは、測度を導入し得る最も基本的な場である\(\mathbb{R} \)の部分集合族について考えます。

 

区間および区間の集合族

数直線\(\mathbb{R} \)の部分集合、すなわち点集合には様々な種類のものがありますが、当面はその中でも区間(interval)だけを外延量の測定対象とします。さらに、区間にも様々な種類がありますが、ここでは有界な右半開区間(bounded right half open interval)だけを外延量の測定対象とします(理由は後述します)。具体的には、\(a\leq b\)を満たす実数\(a,b\in \mathbb{R} \)を任意に選んだ上で、\begin{equation*}\lbrack a,b)=\left\{ x\in \mathbb{R} \ |\ a\leq x<b\right\}
\end{equation*}と定義される\(\mathbb{R} \)の部分集合を考察対象にするということです。以降において区間や半開区間などと言うとき、特に断りのない場合、それは上のような有界な右半開区間を指すものとします。

繰り返しになりますが、当面の間、考察対象である右半開区間\([a,b)\)は有界なものに限定されます。つまり、この区間の端点\(a,b\)は、\begin{equation*}-\infty <a\leq b<+\infty
\end{equation*}を満たす実数です。言い換えると、\(a\)は負の無限大ではない有限な実数であり、\(b\)は正の無限大\(+\infty \)ではない有限な実数であり、両者の間には\(a\leq b\)という関係が成り立ちます。

数直線\(\mathbb{R} \)上の有界な右半開区間をすべて集めてできる\(\mathbb{R} \)の部分集合族を、\begin{equation*}\mathfrak{S}=\left\{ [a,b)\subset \mathbb{R} \ |\ -\infty <a\leq b<+\infty \right\}
\end{equation*}で表記し、\(\mathfrak{S}\)に属する個々の区間を、\begin{equation*}I,\quad I_{k}\ \left( k=1,2,\cdots \right)
\end{equation*}などで表記するものとします。この集合族\(\mathfrak{S}\)に属するそれぞれの区間に対して外延量を与えることが当面の目標ですが、まずは\(\mathfrak{S}\)の性質を確認します。

 

空集合は区間

区間の集合族\(\mathfrak{S}\)が満たす1つ目の性質は、\begin{equation*}\phi \in \mathfrak{S}
\end{equation*}というものです。つまり、空集合は区間です。空集合もまた外延量の測定対象になります。

命題(空集合は区間)
数直線\(\mathbb{R} \)上の区間からなる集合族\(\mathfrak{S}\)は、\begin{equation*}\phi \in \mathfrak{S}
\end{equation*}を満たす。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(空集合は区間)
例えば、\begin{eqnarray*}
\lbrack 0,0) &=&\phi \\
\lbrack -1,-1) &=&\phi \\
\lbrack 1,1) &=&\phi
\end{eqnarray*}などが成り立ちますが、これらはいずれも\(\mathfrak{S}\)の要素です。

 

区間どうしの共通部分は区間

区間集合族\(\mathfrak{S}\)が満たす2つ目の性質は、2つの区間\(I,I^{\prime }\in \mathfrak{S}\)を任意に選んだときに、\begin{equation*}I\cap I^{\prime }\in \mathfrak{S}
\end{equation*}が成り立つというものです。つまり、\(\mathfrak{S}\)は共通部分について閉じています。外延量の測定対象である2つの区間が任意に与えられたとき、それらの共通部分もまた外延量の測定対象になるということです。

命題(区間どうしの共通部分は区間)
数直線\(\mathbb{R} \)上の区間からなる集合族\(\mathfrak{S}\)は共通部分について閉じている。すなわち、区間\(I,I^{\prime}\in \mathfrak{S}\)を任意に選んだとき、\begin{equation*}I\cap I^{\prime }\in \mathfrak{S}
\end{equation*}が成り立つ。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(区間どうしの共通部分)
例えば、\begin{eqnarray*}
\lbrack 0,1)\cap \phi &=&\phi \\
\lbrack -1,0)\cap \lbrack 0,2) &=&\phi \\
\lbrack 0,3)\cap \lbrack 1,2) &=&[1,2) \\
\lbrack 0,2)\cap \lbrack 1,3) &=&[1,2) \\
\lbrack 0,1)\cap \lbrack 2,3) &=&\phi
\end{eqnarray*}などとなりますが、これらはいずれも\(\mathfrak{S}\)の要素です。

有限個の区間\(I_{1},\cdots ,I_{n}\in \mathfrak{S}\)を任意に選んだとき、先の命題を繰り返し適用することにより、\begin{equation*}\bigcap\limits_{k=1}^{n}I_{k}\in \mathfrak{S}
\end{equation*}もまた成り立つことが示されます。つまり、有限個の区間の共通部分もまた区間になるということです。この性質を指して、\(\mathfrak{S}\)は有限交叉について閉じている(closed with respect to finite intersections)と言います。逆に、\(\mathfrak{S}\)が有限交叉について閉じているとき、\(\mathfrak{S}\)は明らかに2つの区間の交叉についても閉じています。つまり、\(\mathfrak{S}\)は共通部分について閉じているということです。したがって以下の命題を得ます。

命題(有限個の区間の共通部分は区間)
数直線\(\mathbb{R} \)上の区間からなる集合族\(\mathfrak{S}\)が有限交叉について閉じていることと、\(\mathfrak{S}\)が共通部分について閉じていることは必要十分である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

ちなみに、区間の集合族\(\mathfrak{S}\)は可算交叉については閉じていません。つまり、可算個の区間\(I_{1},I_{2},\cdots ,I_{k},\cdots\in \mathfrak{S}\)に対して、\begin{equation*}\bigcap_{k=1}^{\infty }I_{k}\in \mathfrak{S}
\end{equation*}は成り立つとは限らないということです。以下の例より明らかです。

例(区間の可算交叉)
\(a<b\)を満たす点\(a,b\in \mathbb{R} \)を任意に選んだ上で、それぞれの番号\(k\in \mathbb{N} \)に対して、\begin{equation*}I_{k}=\left[ a,b+\frac{1}{k}\right)
\end{equation*}という区間を定義します。明らかに任意の\(k\in \mathbb{N} \)について\begin{equation*}I_{k}\in \mathfrak{S}
\end{equation*}が成り立ちます。その一方で、\begin{equation*}
\bigcap_{k=1}^{\infty }I_{k}\not\in \mathfrak{S}
\end{equation*}となります(演習問題)。

 

区間どうしの差集合は区間の有限非交和として表される

区間集合族\(\mathfrak{S}\)が満たす3つ目の性質は、2つの区間\(I,I^{\prime }\in \mathfrak{S}\)を任意に選んだとき、それに対して有限個の互いに素な区間\(I_{1},\cdots ,I_{n}\in \mathfrak{S}\)が存在して、\begin{equation*}I\backslash I^{\prime }=\bigcup\limits_{k=1}^{n}I_{k}
\end{equation*}が成り立つというものです。つまり、集合族\(\mathfrak{S}\)に属する2つの区間を任意に選んだとき、それらの差集合は、同じく\(\mathfrak{S}\)に属する互いに素な有限個の区間の和集合として表せるということです。

一般に、有限個の互いに素な集合どうしの和集合を直和(direct sum)や有限非交和(finite disjoint unions)などと呼びます。したがって、上の性質は、任意の2つの区間の差集合が区間の有限非交和として表現可能であることと端的に表現できます。ちなみに、区間そのものは1個の区間の非交和とみなされます。

命題(任意の2つの区間の差集合は区間の有限非交和として表される)
数直線\(\mathbb{R} \)上の区間からなる集合族\(\mathfrak{S}\)に属する任意の2つの区間の差集合は区間の有限非交和として表現可能である。すなわち、区間\(I,I^{\prime }\in \mathfrak{S}\)を任意に選んだとき、それらに対して、\begin{equation*}I\backslash I^{\prime }=\bigcup\limits_{k=1}^{n}I_{k}
\end{equation*}を満たす有限個の互いに素な区間\(I_{1},\cdots ,I_{n}\in \mathfrak{S}\)が存在する。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(区間どうしの差集合)
例えば、\begin{eqnarray*}
\lbrack 0,1)\backslash \phi &=&[0,1) \\
\phi \backslash \lbrack 0,1) &=&\phi \\
\lbrack 0,2)\backslash \lbrack -1,0) &=&[0,2) \\
\lbrack 0,3)\backslash \lbrack 1,2) &=&[0,1)\cup \lbrack 2,3) \\
\lbrack 0,1)\backslash \lbrack 2,3) &=&[0,1)
\end{eqnarray*}などとなりますが、この結果は先の命題の主張と整合的です。

以上の命題を用いると、\(\mathfrak{S}\)の要素である区間そのものもまた区間の有限非交和として表現可能であることが示されます。実際、区間\(I\in \mathfrak{S}\)を任意に選んだとき、\begin{equation*}I=I\backslash \phi
\end{equation*}という関係が成り立ちますが、\(\phi \)もまた区間であることから\(I\backslash \phi \)は区間の差集合であるため、先の命題より、これは区間の有限非交和として表すことができます。したがって、\(I\backslash \phi \)に等しい\(I\)もまた区間の有限非交和として表されることが明らかになりました。

命題(区間は有限個の区間の非交和として表現可能)
数直線\(\mathbb{R} \)上の区間からなる集合族\(\mathfrak{S}\)に属する任意の区間は区間の有限非交和として表現可能である。すなわち、区間\(I\in \mathfrak{S}\)を任意に選んだとき、それらに対して、\begin{equation*}I=\bigcup\limits_{k=1}^{n}I_{k}
\end{equation*}を満たす有限個の互いに素な区間\(I_{1},\cdots ,I_{n}\in \mathfrak{S}\)が存在する。

区間\(I,I_{1}\in \mathfrak{S}\)を任意に選んだとき、それらの間に\(I_{1}\subset I\)が成り立つものとします。2つの区間の差集合は区間の有限非交和として表現可能であることから、このとき、\begin{equation*}I/I_{1}=\bigcup\limits_{k=2}^{n}I_{k}
\end{equation*}を満たす有限個の互いに素な区間\(I_{2},\cdots ,I_{n}\in \mathfrak{S}\)が存在します。\(I_{1}\)は\(I_{2},\cdots ,I_{n}\)の中のいずれとも互いに素であるため、このとき、\begin{equation*}I=\bigcup\limits_{k=1}^{n}I_{k}
\end{equation*}が成り立ちます。つまり、区間\(I\)が自身の部分集合であるような区間\(I_{1}\)を持つとき、\(I\)は\(I_{1}\)を含む有限個の区間の非交和として表現できるということです。以上の主張の逆も成立するため、区間どうしの差集合が区間の有限非交和として表されるという性質は以下の形に言い換え可能です。

命題(区間は自身の部分集合を含む有限個の区間の非交和として表現可能)
数直線\(\mathbb{R} \)上の区間からなる集合族\(\mathfrak{S}\)について、以下の2つは必要十分である。

  1. 区間\(I\in \mathfrak{S}\)とその部分集合であるような区間\(I^{\prime }\in \mathfrak{S}\)をそれぞれ任意に選んだとき、\(I\)は\(I^{\prime }\)を含めた\(\mathfrak{S}\)の有限個の区間の非交和として表現できる。
  2. 2つの区間\(I,I^{\prime }\in \mathfrak{S}\)を任意に選んだとき、差集合\(I\backslash I^{\prime }\)は\(\mathfrak{S}\)の有限個の区間の非交和として表現できる。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

 

区間の集合族は集合半環

一般に、集合\(X\)の部分集合族\(\mathfrak{A}\)が空集合を要素として持ち、共通部分について閉じており、さらに、\(\mathfrak{A}\)の任意の2つの要素の差集合が\(\mathfrak{A}\)の要素の有限非交和として表すことができるとき、そのような\(\mathfrak{A}\)を集合半環(semiring of sets)と呼びます。先に示したように、\(\mathbb{R} \)の部分集合族である区間の集合族\(\mathfrak{S}\)は以上の3つの性質を満たしますが、これは\(\mathfrak{S}\)が集合半環であることを意味します。

命題(区間集合族は集合半環)
数直線\(\mathbb{R} \)上の区間からなる集合族\(\mathfrak{S}\)は集合半環である。すなわち、\(\mathfrak{S}\)は空集合を要素として持ち、共通部分について閉じており、さらに、\(\mathfrak{S}\)の任意の2つの要素の差集合は\(\mathfrak{S}\)の要素の有限非交和として表すことができる。

外延量を測定する対象を有界な右半開区間に限定する理由は以下の通りです。例えば、有界な開区間からなる集合族を議論の対象にする場合、その集合族は集合半環になりません。実際、\begin{equation*}
a<b<c<d
\end{equation*}を満たす実数\(a,b,c,d\in \mathbb{R} \)から有界な開区間\(\left(a,d\right) ,\left( b,c\right) \)を構成し、これらの差集合をとると、\begin{equation*}\left( a,d\right) \backslash \left( b,c\right) =(a,b]\cup \lbrack c,d)
\end{equation*}となりますが、これは有界な開区間の非交和ではありません。有界な閉区間からなる集合族を議論の対象にする場合にも同様の問題が発生します(演習問題にします)。一方、議論の対象を有界な右半開区間に限定すれば、先に示したように、区間の集合族\(\mathfrak{S}\)が集合半環であることを保証できます。

 

区間の集合族は集合環ではない

一般に、集合\(X\)の部分集合族\(\mathfrak{A}\)が差集合と和集合の双方について閉じているとき、そのような\(\mathfrak{A}\)を集合環(ring of sets)と呼びます。先ほど、区間の集合族\(\mathfrak{S}\)が集合半環であることを示しましたが、その一方で\(\mathfrak{S}\)は集合環ではありません。以下の例から明らかです。

例(区間の集合族は差集合について閉じていない)
以下の条件\begin{equation*}
a\leq c<d\leq b
\end{equation*}を満たす\(a,b,c,d\in \mathbb{R} \)から区間\([a,b),[c,d)\in \mathfrak{S}\)を構成します。これらの区間の差集合をとると、\begin{equation*}\lbrack a,b)\backslash \lbrack c,d)=[a,c)\cup \lbrack d,b)
\end{equation*}となりますが、\(c<d\)ゆえに、上の集合は区間ではなく、したがって\(\mathfrak{S}\)の要素でもありません。したがって\(\mathfrak{S}\)は差集合について閉じていないため集合環ではありません。

区間の集合族\(\mathfrak{S}\)は和集合についても閉じていません。

例(区間の集合族は和集合について閉じていない)
以下の条件\begin{equation*}
a\leq b<c\leq d
\end{equation*}を満たす\(a,b,c,d\in \mathbb{R} \)から区間\([a,b),[c,d)\in \mathfrak{S}\)を構成します。これらの区間の和集合をとると、\begin{equation*}\lbrack a,b)\cup \lbrack c,d)
\end{equation*}となりますが、\(b<c\)ゆえに、上の集合は区間ではなく、したがって\(\mathfrak{S}\)の要素でもありません。したがって\(\mathfrak{S}\)は和集合について閉じていないため集合環ではありません。

 

演習問題

問題(区間の可算交叉)
\(a<b\)を満たす点\(a,b\in \mathbb{R} \)を任意に選んだ上で、それぞれの番号\(k\in \mathbb{N} \)に対して、\begin{equation*}I_{k}=\left[ a,b+\frac{1}{k}\right)
\end{equation*}という区間を定義します。このとき、\begin{equation*}
\bigcap_{k=1}^{\infty }I_{k}\not\in \mathfrak{S}
\end{equation*}であることを示してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(有界閉区間の集合族)
数直線\(\mathbb{R} \)上の有界な閉区間をすべて集めてできる\(\mathbb{R} \)の部分集合族を、\begin{equation*}\mathfrak{S}=\left\{ \left[ a,b\right] \subset \mathbb{R} \ |\ -\infty <a\leq b<+\infty \right\}
\end{equation*}で表記します。\(\mathfrak{S}\)は集合半環でしょうか。議論してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(区間の有限展開)
区間\(I\in \mathfrak{S}\)に対して、有限\(m\)個の互いに素な区間\(I_{1},\cdots ,I_{m}\in \mathfrak{S}\)が存在して、\begin{equation*}I_{k}\subset I\quad \left( k=1,\cdots ,m\right)
\end{equation*}が成り立つ場合には、\(I_{1},\cdots ,I_{m}\)を含む有限\(n\ \left( \geq m\right) \)個の互いに素な区間\(I_{1},\cdots ,I_{m},I_{m+1},\cdots ,I_{n}\in \mathfrak{S}\)が存在して、\begin{equation*}I=\bigcup\limits_{k=1}^{n}I_{k}
\end{equation*}と表すことができることを証明してください。ただし、証明では\(\mathfrak{S}\)が集合半環であることを前提として使っても構いません。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(区間の差の有限展開)
数直線\(\mathbb{R} \)上の有界な右半開区間からなる集合族\(\mathfrak{S}\)について考えます。区間\(I\in \mathfrak{S}\)に対して、有限\(m\)個の互いに素な区間\(I_{1},\cdots ,I_{m}\in \mathfrak{S}\)が存在して、\begin{equation*}I_{k}\subset I\quad \left( k=1,\cdots ,m\right)
\end{equation*}が成り立つ場合には、\(I_{1},\cdots ,I_{m}\)とは互いに素な有限個の互いに素な区間\(J_{1},\cdots ,J_{n}\in \mathfrak{S}\)が存在して、\begin{equation*}I\backslash \bigcup\limits_{k=1}^{m}I_{k}=\bigcup\limits_{l=1}^{n}J_{l}
\end{equation*}と表すことができることを証明してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

前のページ:
次のページ:

区間の長さ

Twitter
Mailで保存

質問とコメント

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

区間の長さ

区間の外延量を表現する集合関数を定義します。この集合関数はσ-加法測度としての性質を満たすことを示します。

区間塊

有限個の互いに素な区間の和集合として表される点集合を区間塊と呼びます。すべての区間塊からなる集合族は集合環としての性質を満たします。

連続体(連続体濃度)

実数空間と等しい濃度を持つ無限集合を連続体と呼びます。連続体濃度は可算濃度よりも大きい濃度です。実数空間上の任意の区間は連続体です。

区間の定義

実数の特別な部分集合である区間という概念を定義します。

実数空間における区間と連結集合の関係

実数空間にユークリッド距離を導入した場合、実数空間の部分集合が区間であることと、その集合が連結集合であることは必要十分です。したがって、区間でないことと非連結集合であることも必要十分です。

位相を用いた関数の連続性の判定

関数による任意の開集合の逆像が開集合であることは、その関数が定義域上において連続であるための必要十分条件です。また、関数による任意の有界開区間の逆像が開集合であることもまた、関数が連続であるための必要十分条件です。

連続関数による区間の像

有界な閉区間上に定義された連続関数による定義域の像もまた有界な閉区間になります。また、区間上に定義された連続関数による定義域の像もまた区間になります。

逆関数の連続性

区間上に定義された連続な狭義単調関数の逆関数もまた区間上に定義された連続な狭義単調関数になります。定義域が区間ではない場合、同様の主張は成り立つとは限りません。