教材一覧
教材一覧
教材検索
ASYMPTOIC THEORY

漸近理論

OVERVIEW

漸近理論

代表的な確率分布を紹介するとともに、その性質を解説します。

TABLE OF CONTENTS

目次

DISCRETE RANDOM DISTRIBUTIONS

離散型の確率分布

代表的な離散型確率分布について解説します。

ベルヌーイ分布

ある確率変数が1と0の二つの値のみをとり得るとともに、1を値としてとる確率がpで、0を値としてとる確率が1-pである場合には、その確率変数はパラメーターpのベルヌーイ分布にしたがうと言います。

二項分布(ベルヌーイ試行)

ベルヌーイ試行と呼ばれる試行を定義するとともに、それに関連して二項分布と呼ばれる離散型の確率分布を定義します。

離散型の一様分布

離散型の確率変数がすべての値を等しい確率でとる場合、そのような確率変数は離散型の一様分布にしたがうと言います。離散型一様分布にしたがう確率変数を定義するとともに、その期待値と分散を求めます。

ポアソン分布

単位時間内に何らかの出来事が起こる回数を表す離散型の確率変数の確率分布をポアソン分布と呼びます。ポアソン分布を定義するとともに、その基本的な性質について解説します。

CONTINUOUS PROBABILITY DISTRIBUTION

連続型の確率分布

代表的な連続型確率分布について解説します。

連続型の一様分布

連続型の確率変数の確率分布を記述する確率密度関数が定数関数である場合、その確率変数は連続型の一様分布にしたがうと言います。連続型一様分布にしたがう確率変数を定義するとともに、その期待値と分散を求めます。

指数分布

何らかの出来事が起こるまでの経過時点を表す連続型の確率変数の確率分布を指数分布と呼びます。指数分布を定義するとともに、その基本的な性質について解説します。

RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

前提知識

本節を学ぶ上で以下の知識が役に立ちます。

確率

公理主義的な確率論について解説します。具体的には、確率空間や確率関数などの概念を定義した上で、確率空間の公理をもとに、確率空間が満たす基本的な性質を証明します。

離散型の確率分布

確率に関して定量的な分析を行うために確率変数を用いて標本点を数値化します。特に、試行において起こり得る結果が有限個ないし可算個である場合には離散型の確率変数を利用します。

連続型の確率分布

確率に関して定量的な分析を行うために確率変数を用いて標本点を数値化します。特に、試行において起こり得る結果が非可算個である場合には連続型の確率変数を利用します。

ADVANCED KNOWLEDGE

発展知識

本節で得た知識は以下の分野を学ぶ上での基礎になります。

REGISTER

プレミアム会員登録