教材一覧
教材一覧
教材検索
CONTINUOUS PROBABILITY DISTRIBUTION

連続型の確率分布

OVERVIEW

連続型の確率分布

確率に関して定量的な分析を行うために確率変数を用いて標本点を数値化します。特に、試行において起こり得る結果が非可算個である場合には連続型の確率変数を利用します。

TABLE OF CONTENTS

目次

CONTINUOUS RANDOM VARIABLE

連続型の確率分布

取り得る値からなる集合が区間などの非可算集合であるような確率変数を連続型の確率変数と呼びます。

連続型の確率変数

それぞれの標本点に対して実数を1つずつ割り当てる写像を確率変数と呼びます。値域が区間もしくは互いに素な区間の和集合であるような確率変数を連続型の確率変数と呼びます。

連続型確率変数の確率密度関数

連続型の確率変数の確率分布を確率質量関数を通じて表現することはできません。連続型の確率変数の確率分布を描写する際には確率密度関数と呼ばれる概念を利用します。

連続型確率変数の期待値

連続型の確率変数の値と確率密度関数の値の積を全区間上で積分することにより得られる値を確率変数の期待値と呼びます。期待値は確率変数の実現値の見込みの値を表す指標です。

連続型確率変数の分散と標準偏差

連続型の確率変数がとり得るそれぞれの値と期待値の差の平方をとった上で、得られた平方を積分すると分散と呼ばれる指標が得られます。分散の正の平方根を標準偏差と呼びます。

JOINT RANDOM VARIABLE

連続型の同時確率分布

問題としている試行において2つの確率変数を同時に扱う必要がある場合、それを同時確率変数として表現します。

連続型の同時確率変数(確率ベクトル)

それぞれの標本点に対してベクトルを1つずつ割り当てる写像を同時確率変数や確率ベクトルなどと呼びます。連続型の確率変数から定義される同時確率変数を連続型の同時確率変数と呼びます。

連続型同時確率変数の同時確率密度関数

連続型の同時確率変数の確率分布を同時確率(質量)関数を通じて表現することはできません。連続型の同時確率変数の確率分布を描写する際には同時確率密度関数と呼ばれる概念を利用します。

連続型同時確率変数の期待値

連続型の同時確率変数の期待値を定義するとともに、同時確率変数と2変数関数の合成関数として定義される確率変数の期待値を求める方法を解説します。また、独立な確率変数の積の期待値は個々の確率変数の期待値の積と一致することを示します。

連続型同時確率変数の分散と標準偏差

連続型の同時確率変数の分散を定義するとともに、同時確率変数と2変数関数の合成関数として定義される確率変数の分散を求める方法を解説します。また、独立な確率変数の和の分散は個々の確率変数の分散の和と一致することを示します。

RANDOM VECTOR

連続型の確率ベクトル

問題としている試行において3個以上の確率変数を同時に扱う必要がある場合、それを確率ベクトルとして表現します。

連続型の確率ベクトル(多変量確率変数)

それぞれの標本点に対してベクトルを1つずつ割り当てる写像を確率ベクトルと呼びます。特に、有限個の離散型確率変数から定義される確率ベクトルを離散型の確率ベクトルと呼びます。

連続型確率ベクトルの同時確率密度関数

連続型の確率ベクトルの同時確率分布を表現する際に同時確率質量関数を利用できません。連続型の確率ベクトルの同時確率分布を描写する際には同時確率密度関数を利用します。

連続型確率ベクトルの同時分布関数

連続型の確率ベクトルの同時分布関数とは、確率ベクトルがあるベクトル以下の値をとる確率を与えることを通じて同時確率分布を記述する関数です。

RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

前提知識

本節を学ぶ上で以下の知識が役に立ちます。

確率

公理主義的な確率論について解説します。具体的には、確率空間や確率関数などの概念を定義した上で、確率空間の公理をもとに、確率空間が満たす基本的な性質を証明します。

離散型の確率分布

確率に関して定量的な分析を行うために確率変数を用いて標本点を数値化します。特に、試行において起こり得る結果が有限個ないし可算個である場合には離散型の確率変数を利用します。

ADVANCED KNOWLEDGE

発展知識

本節で得た知識は以下の分野を学ぶ上での基礎になります。

REGISTER

プレミアム会員登録