論理
論理は数学的思考の土台です。数学的な主張を正確に表現し、正確に理解し、その真偽を正しく判定するためには論理のルールを身につける必要があります。ここでは命題論理と述語論理について学びます。
実数の公理系から出発して、実数空間上に定義された演算、順序、そして実数の連続性などについて議論します。さらに、実数空間の位相や数列の極限、関数の極限、関数の連続性などについて解説します。これらの知識は後に関数の微分や積分について学ぶ上での土台となります。
本節で得た知識は以下の分野を学ぶ上での基礎になります。
ユークリッド空間を定義した上で、そこでの点列や位相の性質および各種の写像(ベクトル値関数・多変数関数・多変数のベクトル値関数)の極限や連続性などについて解説します。これらの知識は後に微分や積分について学ぶ際の土台となります。
私たちが一般に想像する「距離」とはユークリッド距離ですが、公理主義にもとづいて距離という概念を定義する場合、ユークリッド距離は数ある距離概念の中の1つに過ぎません。公理主義の立場から距離空間と呼ばれる概念を定義します。
微分は「変化」に関する学問です。微分を学べば物事や現象の「変化」を定量的に記述できるようになるだけでなく、変化がもたらす影響を評価したり、変化が起きる場での最適な状態を特定できるようになります。