二項関係の定義と具体例
複数の物事が互いに関わり合っている状態を関係と呼びますが、数学において関係(二項関係)とは、2つの集合の直積の部分集合として定式化されます。
関係は2つの集合の直積の部分集合として定式化されます。
複数の物事が互いに関わり合っている状態を関係と呼びますが、数学において関係(二項関係)とは、2つの集合の直積の部分集合として定式化されます。
始集合と終集合が一致する関係を自己関係と呼びます。自己関係は与えられた集合の直積の部分集合として定義されます。
集合Aから集合Bへの二項関係Rが与えられたとき、Rの要素である順序対(a,b)の成分を入れ替えることにより得られる順序対(b,a)からなるBからAへの二項関係をもとの二項関係Rの逆関係と呼びます。
2つの関係 R, S が与えられたとき、xRy と ySz がともに成り立つような y が存在するような順序対 (x,z) からなる集合を R と S の合成関係と呼び、これを S∘R で表します。
関係は集合として定義されるため、関係に対して通常の集合演算が適用可能です。補関係、共通関係、和関係、差関係などの概念を定義します。
二項関係の基本的な性質について解説します。
集合A上の二項関係Rのもとで、Aの任意の要素xがx自身と関係を持つ場合、Rは反射律を満たすと言います。反射律を満たす二項関係の例を挙げます。
集合A上の二項関係Rのもとで、Aの任意の要素xがx自身と関係を持たない場合、Rは非反射律を満たすと言います。非反射律を満たす二項関係の例を挙げます。
集合A上の二項関係Rのもとで、Aの任意の要素x,yについて、Rのもとでxがyと関係を持つ場合にはyとxが関係を持つ場合、Rは対称律を満たすと言います。対称律を満たす二項関係の例を挙げます。
集合A上の二項関係Rのもとで、Aの任意の要素x,yについて、xがyと関係を持つとともにyがxと関係を持つ場合にはxとyが一致する場合、Rは反対称律を満たすと言います。反対称律を満たす二項関係の例を挙げます。
集合A上の二項関係Rのもとで、Aの任意の要素x,yについて、xがyと関係を持つ場合にはyがxと関係を持たない場合、Rは非対称律を満たすと言います。非対称律を満たす二項関係の例を挙げます。
集合A上の二項関係Rのもとで、Aの任意の要素x,y,zについて、xがyと関係を持つとともにyがzと関係を持つ場合にxとzが関係を持つことが保証されるならば、Rは推移律を満たすと言います。推移律を満たす二項関係の例を挙げます。
集合A上の二項関係Rが完備律、完全律、三分律を満たすことの意味をそれぞれ定義した上で、それらの関係を解説するとともに、具体例を挙げます。
反射律、対称律、推移律を満たす関係を同値関係と呼びます。
反射律、対称律、推移律を満たす二項関係を同値関係と呼びます。また、同値関係のもとで 2 つの要素が関係を持つとき、それらの要素は同値であると言います。同値関係を定義した上で、同値関係の具体例を提示します。
集合 A 上の同値関係 R が与えられたとき、A の要素 x を任意に選べば、R のもとで x と同値であるような A のすべての要素からなる集合を構成できます。このような A の部分集合を x を代表元とする同値類と呼びます。
集合 A のそれぞれの要素 a に対して、それを代表元とする同値類 [a] を生成できますが、そのようなすべての同値類からなる A の部分集合族を商集合と呼びます。商集合は A の分割です。つまり、A の任意の要素は何らかの同値類に属するとともに、異なる複数の同値類に属することはありません。
本節を学ぶ上で以下の知識が役に立ちます。
集合論は数学の土台です。あらゆる数学的概念は集合を用いて記述できます。ここでは集合を定義した上で、集合演算とその性質について学び、さらには集合族や直積集合、関係などについて学びます。