WIIS

STATIC GAME OF INCOMPLETE INFORMATION

不完備情報の静学ゲーム

OVERVIEW

不完備情報の静学ゲーム

不完備情報の静学ゲームとは非協力かつ静学かつ不完備情報であるようなゲームのことです。つまり、そこではプレイヤーたちの間に拘束的な合意は成立せず(非協力)、それぞれのプレイヤーは意思決定を行う際に他のプレイヤーたちが行った意思決定を事前に観察できず(静学)、なおかつ少なくとも1人のプレイヤーがゲームのルールに関して私的情報を持ちます(不完備情報)。不完備情報ゲームにおける均衡概念はベイジアンナッシュ均衡です。

TABLE OF CONTENTS

目次

BAYESIAN GAME

ベイジアンゲーム

不完備情報の静学ゲームをベイジアンゲームと呼ばれるモデルとして定式化します。

ベイジアンゲームの定義

不完備情報の静学ゲームを記述するためにはプレイヤー、行動、情報、結果、利得などをそれぞれ具体的に特定する必要があります。それらの要素を記述する方法はいくつか存在しますが、ここではベイジアンゲームと呼ばれるモデルについて解説します。

ベイジアンゲームの私的価値モデル

不完備情報の静学ゲームをベイジアンゲームとして表現するとき、すべてのプレイヤーの利得関数が自身のタイプのみに依存し、他のプレイヤーのタイプに依存しないものと仮定する場合には、そのようなモデルを私的価値モデルと呼びます。

ベイジアンゲームにおける純粋戦略

不完備情報の静学ゲームをベイジアンゲームとして表現したとき、プレイヤーによる意思決定は純粋戦略と呼ばれる概念として定式化されます。プレイヤーの純粋戦略とは、自身のそれぞれのタイプに対して行動を1つずつ定める行動計画です。

ベイジアンゲームにおける信念と中間期待利得

ベイジアンゲームにおいて不確実な状況下で意思決定を迫られるプレイヤーは、自身のそれぞれのタイプに対して、その場合に自分が直面し得る状態ゲームがそれぞれどの程度の確率で起こりえるか主観的に定めた上で、その予想にもとづいて意思決定を行うものとします。

ベイジアン仮説(ベイジアンゲームにおける行動原理)

不完備情報の静学ゲームを表現するベイジアンゲームに直面したそれぞれのプレイヤーは、自身のタイプと信念にもとづいて他のプレイヤーたちのタイプを予想し、その予想から算出される中間期待利得を最大化するような純粋戦略を採用するものと仮定します。

DOMINANT STRATEGY EQUILIBRIUM

支配戦略均衡

不完備情報の静学ゲームにおける均衡概念としての支配戦略均衡について解説します。

ベイジアンゲームにおける広義の支配戦略均衡

ベイジアンゲームにおいてプレイヤーがある純粋戦略を選ぶとき、自身を含めた全員のタイプや他のプレイヤーたちの行動、信念に関わらず利得を常に最大化できるならば、そのような戦略を支配純粋戦略と呼びます。支配純粋戦略の組を支配純粋戦略均衡と呼びます。

EX-POST EQUILIBRIUM

事後均衡

不完備情報の静学ゲームにおける均衡概念としての支配戦略均衡について解説します。

ベイジアンゲームにおける広義の事後均衡

ベイジアンゲームにおいて他のプレイヤーたちの純粋戦略に直面したプレイヤーがある純粋戦略を選ぶ場合、自身のタイプや他のプレイヤーたちのタイプによらず利得を最大化できる場合、そのような純粋戦略を事後最適反応と呼びます。事後最適反応の組を事後均衡と呼びます。

事後均衡と支配戦略均衡の関係

ベイジアンゲームにおいて事後均衡は支配戦略均衡でもありますが、その逆は成立するとは限りません。ただ、私的価値モデルにおいて事後均衡が一定の条件を満たす場合、それは支配戦略均衡になることが保証されます。

BAYESIAN NASH EQUILIBRIUM

ベイジアンナッシュ均衡

不完備情報の静学ゲームにおける均衡概念であるベイジアンナッシュ均衡について解説します。

ベイジアンナッシュ均衡

ベイジアンナッシュ均衡における最適反応の概念を定義するとともに、最適反応であるような純粋戦略の組としてベイジアンナッシュ均衡と呼ばれる均衡概念を定義します。

ベイジアンナッシュ均衡と事後均衡の関係

ベイジアンゲームにおいて、事後均衡はベイジアンナッシュ均衡でもある一方で、その逆は成り立つとは限りません。また、支配戦略均衡はベイジアンナッシュ均衡でもある一方で、その逆は成り立つとは限りません。

HARSANYI TRANSFORMATION

ハサーニ変換とベイズ同値仮説

ゲームにナッシュ均衡が存在するための条件や、ナッシュ均衡の個数に関する議論を行います。

ベイジアンゲームにおける高階の信念と共通事前分布

ベイジアンゲームにおいてプレイヤーたちが各々のタイプを読み合う可能性を認めると、ゲームの分析が突如として複雑になってしまいます。このような問題を解消するために、多くの場合、プレイヤーたちのタイプに関して共通事前分布という仮定を設けます。

RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

前提知識

本節を学ぶ上で必要となる前提知識はありません。

ADVANCED KNOWLEDGE

発展知識

本節で得た知識は以下の分野を学ぶ上での基礎になります。

述語論理

命題論理の基本単位が命題変数であったのに対し、述語論理では命題関数と呼ばれる概念が基本単位となります。それにより扱うことのできる言明の範囲が広がるとともに、量化と呼ばれる操作が可能になります。

ワイズの理念とサービス

REGISTER

プレミアム会員登録

CONTACT

メールフォーム