ベルヌーイ分布
ある確率変数が1と0の二つの値のみをとり得るとともに、1を値としてとる確率がpで、0を値としてとる確率が1-pである場合には、その確率変数はパラメーターpのベルヌーイ分布にしたがうと言います。
代表的な離散型確率分布について解説します。
ある確率変数が1と0の二つの値のみをとり得るとともに、1を値としてとる確率がpで、0を値としてとる確率が1-pである場合には、その確率変数はパラメーターpのベルヌーイ分布にしたがうと言います。
ベルヌーイ試行と呼ばれる試行を定義するとともに、それに関連して二項分布と呼ばれる離散型の確率分布を定義します。
離散型の確率変数がすべての値を等しい確率でとる場合、そのような確率変数は離散型の一様分布にしたがうと言います。離散型一様分布にしたがう確率変数を定義するとともに、その期待値と分散を求めます。
単位時間内に何らかの出来事が起こる回数を表す離散型の確率変数の確率分布をポアソン分布と呼びます。ポアソン分布を定義するとともに、その基本的な性質について解説します。
二項分布の確率密度関数には組合せの数が関与するため、試行パラメータnが大きい場合には計算が困難です。試行パラメータnが十分大きく成功パラメータpが十分小さい場合、二項分布はポアソン分布によって近似できるため、計算が容易になります。
代表的な連続型確率分布について解説します。
連続型の確率変数の確率分布を記述する確率密度関数が定数関数である場合、その確率変数は連続型の一様分布にしたがうと言います。連続型一様分布にしたがう確率変数を定義するとともに、その期待値と分散を求めます。
何らかの出来事が起こるまでの経過時点を表す連続型の確率変数の確率分布を指数分布と呼びます。指数分布を定義するとともに、その基本的な性質について解説します。
人間の身長の分布や試験の得点の分布など、現実の様々な局面において正規分布は登場します。また、試行を繰り返し行う状況において各回の結果が独立同一分布(i.d.d.)にしたがう場合、試行回数を限りなく増やすと、標本平均の確率分布は正規分布へ限りなく近づきます(中心極限定理)。
有限n個の独立な確率変数がいずれも標準正規分布にしたがう場合、それらの二乗どうしの和として定義される確率変数は自由度nのカイ二乗分布にしたがうと言います。カイ二乗分布は統計において重要な役割を果たします。
本節を学ぶ上で以下の知識が役に立ちます。
本節で得た知識は以下の分野を学ぶ上での基礎になります。