非分割財の交換問題(シャプレー・スカーフの住宅市場)
商品を1つずつ所有している複数のプレイヤーが、何らかのルールにもとづいて商品を交換しようとしている状況を非分割財の交換問題と呼ばれるモデルとして定式化します。このような問題はシャプレー・スカーフ経済、住宅市場、住宅交換などとも呼ばれます。
非分割財の交換経済(シャプレー・スカーフ経済)と呼ばれる資源配分問題と、そこでの資源配分ルールを定義します。
商品を1つずつ所有している複数のプレイヤーが、何らかのルールにもとづいて商品を交換しようとしている状況を非分割財の交換問題と呼ばれるモデルとして定式化します。このような問題はシャプレー・スカーフ経済、住宅市場、住宅交換などとも呼ばれます。
非分割財の交換問題(シャプレー・スカーフの住宅市場)において、プレイヤーの選好に関して非外部性と私的価値を仮定する場合、そのようなモデルを私的価値モデルと呼びます。
非分割財の交換問題(シャプレー・スカーフの住宅市場)においてメカニズムを提示されたエージェントたちが直面する戦略的状況をベイジアンゲームとして定式化します。
非分割財の交換経済におけるメカニズムが満たすべき望ましい性質を挙げます。
非分割財の交換問題(シャプレー・スカーフの住宅市場)におけるメカニズムのもとですべてのエージェントが自身の選好を正直に表明することが均衡になる場合、そのようなメカニズムは誘因両立性を満たすと言います。
非分割財の交換問題(シャプレー・スカーフの住宅市場)におけるメカニズムが与えられたとき、メカニズムの均衡において、メカニズムが定める配分が任意のプレイヤーにとって初期配分以上に望ましいことが保証されるならば、そのようなメカニズムは個人合理性を満たすと言います。
ある配分を出発点に誰かの満足度を高めようとすると他の人の犠牲が伴うような状態であるとき、その配分はパレート効率的であると言います。また、パレート効率的な配分を常に選び取るメカニズムをパレート効率的なメカニズムと呼びます。
ある配分を出発点に、そこからプレイヤーのグループ(提携)が内部で商品を交換することでグループ内でのパレート改善が可能である場合、その配分はその提携によってブロックされると言います。また、いかなる提携によってもブロックされない配分をコアと呼び、コアを常に選び取るメカニズムをコア選択メカニズムと呼びます。
非分割財の交換問題(シャプレー・スカーフの住宅市場)においてエージェントたちが商品を交換し狭義コアが実現した後、任意の提携が商品を再交換する動機を持たない場合、そのような狭義コアは安定的であると言います。安定的な狭義コアを常に選ぶメカニズムを配分メカニズムと呼びます。
分割財の交換問題(シャプレー・スカーフの住宅市場)に対して便宜的に価格体系を導入したとき、配分と価格ベクトルの組が予算制約条件と選好最大化条件を満たすのであれば、そのような組を競争均衡と呼びます。また、競争的な配分を常に選び取るメカニズムを競争均衡メカニズムと呼びます。
非分割財の交換経済における代表的なメカニズムであるトップ・トレーディング・サイクルメカニズムについて解説します。
非分割財の交換問題(シャプレー・スカーフの住宅市場)における代表的なメカニズムであるトップ・トレーディング・サイクルメカニズム(TTCメカニズム)の内容と、その性質について解説します。
非分割財の交換問題(シャプレー・スカーフの住宅市場)が一定の条件を満たす場合、一意的な狭義コアと、一意的とは限らない広義コアが存在することが保証されます。
準備中です。
不完備情報の静学ゲームとは非協力かつ静学かつ不完備情報であるようなゲームのことです。つまり、そこではプレイヤーたちの間に拘束的な合意は成立せず(非協力)、それぞれのプレイヤーは意思決定を行う際に他のプレイヤーたちが行った意思決定を事前に観察できず(静学)、なおかつ少なくとも1人のプレイヤーがゲームのルールに関して私的情報を持ちます(不完備情報)。不完備情報ゲームにおける均衡概念はベイジアンナッシュ均衡です。
準備中です。