教材一覧
教材検索
STATIC GAME OF COMPLETE INFORMATION

完備情報の静学ゲーム

OVERVIEW

本節で学ぶ内容

完備情報の静学ゲームとは非協力かつ静学かつ完備情報であるようなゲームのことです。つまり、そこではプレイヤーたちの間に拘束的な合意は成立せず(非協力)、それぞれのプレイヤーは意思決定を行う際に他のプレイヤーたちが行った意思決定を事前に観察できず(静学)、なおかつゲームのルールはプレイヤーたちにとって共有知識です(完備情報)。完備情報ゲームにおける均衡概念はナッシュ均衡です。
TABLE OF CONTENTS

目次

SECTION 1

戦略型ゲーム

完備情報の静学ゲームを戦略型ゲームと呼ばれるモデルを用いて表現します。

戦略型ゲーム(標準型ゲーム)

完備情報の静学ゲームを記述するためにはプレイヤー、行動、結果、利得などをそれぞれ具体的に特定する必要があります。それらの要素を記述する方法はいくつか存在しますが、ここでは戦略型ゲームと呼ばれるモデルについて解説します。

READ MORE »

合理性の仮定

ゲームに参加するプレイヤーはそれぞれ明確な目的を持ち、その目的を達成するために最適な行動を選択するものと仮定します。さらに、プレイヤーの目的は自己の利得の最大化であると仮定します。つまり、ゲームに参加するプレイヤーたちは、意志決定の際に自分の利得の最大化をめざすという意味において利己的であるものと仮定します。

READ MORE »
SECTION 2

戦略型ゲームの混合拡張

プレイヤーが何らかの確率確率にもとづいて選択を行う状況を混合戦略と呼ばれる概念として定式化します。

完備情報の静学ゲームにおける期待利得

完備情報の静学ゲームにおいてプレイヤーたちが混合戦略を選択する場合には、プレイヤーはクジと呼ばれる不確実な状況どうしを比較することになります。この場合、プレイヤーの評価体系はクジどうしを比較する選好関係として定式化されますが、さらにこの選好関係に対応する関数を期待利得関数と呼びます。

READ MORE »

戦略型ゲームの混合拡張

完備情報の静学ゲームにおいてプレイヤーたちが純戦略を選択する状況は戦略型ゲームとして表現できます。一方、プレイヤーたちが混合戦略を選択する状況は戦略型ゲームを拡張した混合拡張と呼ばれる概念として表現できます。

READ MORE »

期待効用仮説

完備情報の静学ゲームを表現する戦略型ゲームの混合拡張に直面したそれぞれのプレイヤーは、期待効用仮説にもとづいて混合戦略集合の中から自身の期待利得を最大化する混合戦略を選びます。

READ MORE »
SECTION 3

戦略どうしの支配関係

戦略どうしの支配関係について解説します。

SECTION 4

支配戦略

支配戦略について解説します。

SECTION 5

支配戦略均衡

支配戦略均衡について解説します。

狭義の支配戦略均衡

戦略型ゲームにおける純粋戦略の組を構成する戦略がいずれも狭義の支配戦略である場合、そのような戦略の組を狭義の支配戦略均衡と呼びます。

READ MORE »

広義の支配戦略均衡

戦略型ゲームにおける純粋戦略の組を構成する戦略がいずれも広義の支配戦略である場合、そのような戦略の組を広義の支配戦略均衡と呼びます。

READ MORE »
SECTION 6

支配される戦略の逐次消去

支配される戦略の逐次消去と呼ばれる均衡概念について解説します。

狭義支配される戦略の逐次消去

与えられたゲームにおいてそれぞれのプレイヤーが何らかの戦略によって狭義支配される純粋戦略を持つ場合、それをプレイヤーの純粋戦略集合から消去することを通じてプレイヤーたちが選択し得る戦略の組を絞り込む手法を狭義支配される戦略の逐次消去と呼びます。

READ MORE »

広義支配される戦略の逐次消去

与えられたゲームにおいてそれぞれのプレイヤーが何らかの戦略によって広義支配される純粋戦略を持つ場合、それをプレイヤーの純粋戦略集合から消去することを通じてプレイヤーたちが選択し得る戦略の組を絞り込む手法を広義支配される戦略の逐次消去と呼びます。

READ MORE »
SECTION 7

ナッシュ均衡

ナッシュ均衡と呼ばれる均衡概念について解説します。

広義の純粋戦略ナッシュ均衡

戦略型ゲームにおいてプレイヤーたちの純粋戦略の組に注目したときに、その組を構成する戦略がお互いに最適反応になっているならば、その組を純粋戦略ナッシュ均衡と呼びます。純粋戦略ナッシュ均衡は存在するとは限らず、存在する場合にも一意的であるとは限りません。

READ MORE »

狭義の純粋戦略ナッシュ均衡

戦略型ゲームにおいてプレイヤーたちの純粋戦略の組に注目したときに、その組を構成する戦略がお互いに狭義の最適反応になっているならば、その組を狭義の純粋戦略ナッシュ均衡と呼びます。

READ MORE »

広義の混合戦略ナッシュ均衡

戦略型ゲームの混合拡張においてプレイヤーたちの混合戦略の組に注目したときに、その組を構成する混合戦略がお互いに広義の最適反応になっているならば、その組を広義の混合戦略ナッシュ均衡と呼びます。

READ MORE »

狭義の混合戦略ナッシュ均衡

戦略型ゲームの混合拡張においてプレイヤーたちの混合戦略の組に注目したときに、その組を構成する混合戦略がお互いに狭義の最適反応になっているならば、その組を狭義の混合戦略ナッシュ均衡と呼びます。

READ MORE »

ナッシュ均衡と支配される戦略の逐次消去の関係

戦略型ゲームにナッシュ均衡が存在する場合、そのゲームに支配される戦略の逐次消去を適用すると、そのナッシュ均衡は最後まで残ります。特に、ゲームが逐次消去によって解ける場合、その解はゲームの一意的なナッシュ均衡であることが保証されます。

READ MORE »

ナッシュの定理

有限な戦略型ゲームの混合拡張には必ず混合戦略ナッシュ均衡が存在します。これをナッシュの定理と呼びます。角谷の不動点定理を用いてナッシュの定理を証明します。

READ MORE »
SECTION 8

ナッシュ均衡の正当性

ナッシュ均衡はどのような意味において正当化されるのでしょうか。

ナッシュ均衡の正当性

合理性の仮定や期待効用仮説を採用する限りにおいて、完備情報の静学ゲームにおける均衡概念はナッシュ均衡しか存在しません。しかし、これはあくまでもゲームの分析者の立場から見たときの考え方であり、プレイヤーの視点から考えてみると話が少し複雑になります。

READ MORE »

ナッシュ均衡と自己拘束的な合意

プレイヤーたちが事前交渉を行い何らかの合意に至った場合、それを強制する仕組みが存在しないにも関わらず合意が守られるのであれば、そのような合意は自己拘束的であると言われます。自己拘束的な合意は必ずナッシュ均衡である一方、その逆は成立するとは限りません。

READ MORE »
RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

必須知識

本節を読む上で必須となる前提知識はありません。

ADVANCED KNOWLEDGE

発展知識

本節では完備情報の静学ゲームについて解説しましたが、以下では別のクラスのゲームについて学ぶことができます。

不完備情報の静学ゲーム

不完備情報の静学ゲームとは非協力かつ静学かつ不完備情報であるようなゲームのことです。つまり、そこではプレイヤーたちの間に拘束的な合意は成立せず(非協力)、それぞれのプレイヤーは意思決定を行う際に他のプレイヤーたちが行った意思決定を事前に観察できず(静学)、なおかつ少なくとも1人のプレイヤーがゲームのルールに関して私的情報を持ちます(不完備情報)。不完備情報ゲームにおける均衡概念はベイジアンナッシュ均衡です。

READ MORE »
より具体的なゲームの分析に興味がある場合には以下から学ぶことができます。

ワイズの理念とサービス内容。

REGISTER

プレミアム会員登録はこちらから。

CONTACT

メールフォームをご利用ください。