半順序(半順序集合)の定義と具体例
反射律、反対称律、推移律を満たす二項関係を半順序や順序などと呼びます。また、半順序のもとで2つの要素が関係を持つとき、一方の要素は他方の要素以下であると言います。半順序を定義した上で、半順序の具体例を提示します。
反射律、反対称律、推移律を満たす二項関係を半順序と呼びます。
反射律、反対称律、推移律を満たす二項関係を半順序や順序などと呼びます。また、半順序のもとで2つの要素が関係を持つとき、一方の要素は他方の要素以下であると言います。半順序を定義した上で、半順序の具体例を提示します。
非対称律と推移律を満たす二項関係を狭義半順序や狭義順序などと呼びます。また、狭義半順序のもとで2つの要素が関係を持つとき、一方の要素は他方の要素より小さいと言います。狭義半順序を定義した上で、狭義半順序の具体例を提示します。
半順序から狭義半順序を生成する方法や、逆に、狭義半順序から半順序を生成する方法を解説するとともに、両者の間に成立する関係を紹介します。
反射律、反対称律、推移律、完備律を満たす二項関係を半順序と呼びます。
反射律、反対称律、推移律、完備律を満たす二項関係、すなわち完備律を満たす半順序を全順序や線型順序などと呼びます。全順序を定義した上で、全順序の具体例を提示します。
非対称律、推移律、三分律を満たす二項関係、すなわち三分律を満たす狭義半順序を狭義全順序や狭義線型順序などと呼びます。狭義全順序を定義した上で、その具体例を提示します。
全順序から狭義全順序を生成する方法や、逆に、狭義全順序から全順序を生成する方法を解説するとともに、両者の間に成立する関係について解説します。
有向グラフを用いることにより半順序集合を視覚的に表現できます。加えて、半順序の性質を利用することにより、有向グラフを簡略化したハッセ図と呼ばれる図を得ることができます。
二項関係を表現する行列を隣接行列と呼びます。順序関係は二項関係であるため、順序関係もまた隣接行列を用いて表現できます。
順序集合の部分集合を順序部分集合と呼びます。
順序集合A上に定義されている順序のもとで、Aの非空な部分集合Xが順序集合になっている場合、XをAの順序部分集合と呼びます。
非空な順序部分集合のある要素が、他の任意の要素以上である場合、それを最大元と呼びます。また、非空な順序部分集合のある要素が、他の任意の要素以下である場合、それを最小元と呼びます。
非空な順序部分集合のある要素よりも大きい要素がその集合の中に存在しない場合、その要素を極大元と呼びます。また、非空な順序部分集合のある要素よりも小さい要素がその集合の中に存在しない場合、その要素を極小元と呼びます。
非空な順序部分集合の任意の要素以上の要素が順序集合上に存在する場合、その要素を上界と呼びます。また、非空な順序部分集合の任意の要素以下の要素が順序集合上に存在する場合、その要素を下界と呼びます。
非空な順序部分集合が上に有界であるとともに、上界からなる集合が最小元を持つ場合、それを上限と呼びます。また、非空な順序部分集合が下に有界であるとともに、下界からなる集合が最大元を持つ場合、それを下限と呼びます。
全順序集合のすべての非空な部分集合が最小元を持つ場合、そのような全順序集合を整列集合と呼びます。
全順序集合の任意の非空な部分集合が最小限を持つ場合、このような全順序集合を整列集合と呼びます。また、整列集合上に定義された全順序を整列関係と呼びます。
自然数集合は整列集合であるという事実を整列原理と呼びます。整列原理は数学的帰納法の原理や完全帰納法の原理と必要十分です。整列原理は背理法を用いた証明において有用です。
整列集合に関しては超絶帰納法の原理と呼ばれる命題が成り立ちますが、これは数学的帰納法の原理や完全帰納法の原理の一般化です。
ツォルンの補題について解説します。
半順序集合の任意の全順順序部分集合が上に有界であるならば、その半順序集合の極大元が存在します。これをツォルンの補題と呼びます。
本節を学ぶ上で以下の知識が役に立ちます。
本節で得た知識は以下の分野を学ぶ上での基礎になります。
実数を無限小数として定義する場合、実数に関する議論はすべて無限小数に関する議論として行うことになり面倒です。そこで代替的な方法として公理主義的なアプローチのもとで実数を定義します。ここでは実数を特徴づける公理について解説します。
長さや面積、体積などはいずれも同一種類の小さい量を加え合わせることでより大きな量をつくることができるという意味において外延的な量です。一般に、外延量は測度と呼ばれる概念として一般化されます。ここでは実数空間(数直線)の部分集合を測定対象とするルベーグ測度について解説します。
公理主義的な確率論について解説します。具体的には、確率空間や確率関数などの概念を定義した上で、確率空間の公理をもとに、確率空間が満たす基本的な性質を証明します。