WIIS

ORDINARY DIFFERENTIAL EQUATION

常微分方程式

OVERVIEW

常微分方程式

様々な種類の常微分方程式の解法について解説するとともに、常微分方程式の活用例を紹介します。

TABLE OF CONTENTS

目次

FIRST ORDER ORDINARY DIFFERENTIAL EQUATION

1階常微分方程式

1階の常微分方程式の解法について解説します。

常微分方程式の定義

常微分方程式を定義するとともに、関数が常微分方程式の解であることの意味を解説します。

線型1階常微分方程式の解法

1階の常微分方程式が線型であることの意味を定義するとともに、線型1階の常微分方程式の解を求める方法について解説します。

完全微分方程式の解法

1階の常微分方程式が完全微分方程式であることの意味を定義するとともに、微分方程式が完全微分方程式であることの判定方法や、完全微分方程式の解法について解説します。

積分因子を用いた1階常微分方程式の解法

1階の常微分方程式が完全微分方程式ではない場合にでも、何らかの関数(積分因子)を両辺に掛けることにより完全微分方程式になる場合、完全微分方程式の解法を用いて解くことができます。

ベルヌーイの微分方程式の解法

常微分方程式がベルヌーイの微分方程式である場合、変数を置換することにより、それを線型1階微分方程式へ変換することができます。

APPLICATION OF ORDINARY DIFFERENTIAL EQUATION

常微分方程式の活用例

常微分方程式の活用例について解説します。

噂の拡散(微分方程式の応用例)

集団の内部において噂が拡散していく状況を微分方程式(ロジスティック微分方程式)を用いて記述するとともに、その微分方程式を解く方法について解説します。

連続複利(微分方程式の応用例)

瞬間ごとに金利が発生する状況を想定した複利を連続複利と呼びます。連続複利のモデルを微分方程式を用いて定式化するとともに、その解を求める方法を解説します。

RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

前提知識

本節を学ぶ上で以下の知識が役に立ちます。

関数の定義と具体例

実数空間もしくはその部分集合を始集合とし、実数空間を終集合とする写像を関数と呼びます。つまり、関数とはそれぞれの実数に対して実数を1つずつ定める規則です。

数直線の位相

実数空間すなわち数直線の位相に関するテキストと演習問題です。実数空間上の開集合や閉集合など、位相を規定する概念について解説します。

ADVANCED KNOWLEDGE

発展知識

本節で得た知識は以下の分野を学ぶ上での基礎になります。

ベクトル値関数の微分

曲線(1変数のベクトル値関数)について、その微分を定義した上で、微分に関して成り立つ様々な性質を解説します。

多変数関数の微分

多変数関数(スカラー場)について、偏微分、方向微分、全微分などの様々な微分概念を定義するとともに、これらの微分概念の性質について解説します。

関数の最適化

与えられた制約条件のもとで関数の値を最大化または最小化する変数の値を求めることを最適化と呼びます。ここでは微分可能な関数を対象とする様々な最適化問題の解法を解説します。

ワイズの理念とサービス

REGISTER

プレミアム会員登録

CONTACT

メールフォーム