実数を長方形に配列したものを行列と呼びます。ここでは行列とそれについて定義される代数的演算について学びます。
行列の概念を定義した上で、行列を被演算子とする演算について解説します。
同じ大きさを持つ2つの行列が与えられたとき、対応する成分どうしを足すことにより得られる新たな行列を行列どうしの和と呼びます。また、2つの行列に対してそれらの和を定める演算を行列加法と呼びます。行列集合は行列加法に関して可換群をなします。
同じ大きさを持つ2つの行列が与えられたとき、対応する成分どうしを引くことにより得られる新たな行列を行列どうしの差と呼びます。また、2つの行列に対してそれらの差を定める演算を行列減法と呼びます。
行列とスカラーが与えられたとき、行列のそれぞれの成分をスカラー倍することで新たに得られる行列をもとの行列のスカラー倍と呼びます。また、スカラーと行列に対してスカラー倍を定める演算をスカラー乗法と呼びます。
連立1次方程式に含まれる変数の個数と1次方程式の個数が同数であり、なおかつ係数行列の行列式の値がゼロではない場合には、クラーメルの公式を用いることにより連立1次方程式の解を求めることができます。では、変数の個数と1次方程式の個数が同数であるとは限らない一般の連立1次方程式に関しても、解を導出するための体系的な手法は存在するのでしょうか。
準備中
以下の分野の知識があると本節の内容を円滑に学習できます。
実数を特徴づける公理を出発点とした上で、実数空間上に定義された演算、順序、そして実数の連続性などについて議論します。さらに、数列や収束列、実数空間上の位相、実数空間上に定義された関数の性質などについて議論します。
本節で得た知識は以下の分野を学ぶ上での土台になります。
ユークリッド空間上の無限個の点を順番に並べたものを点列と呼びます。点列は実数列を一般化した概念です。ここでは点列が収束することの意味を定義した上で、収束点列の性質について解説します。
実数空間もしくはその部分集合を定義とし、ユークリッド空間を終集合とする写像を曲線やベクトル値関数などと呼びます。ここでは曲線の収束や連続性などについて解説します。
多変数関数(スカラー場)という概念を定義するとともに、多変数関数が有限な実数へ収束すること、および連続であることの意味を定義した上で、連続な多変数関数の性質について解説します。