教材一覧
教材一覧
教材検索
MATRIX

行列

OVERVIEW

行列

実数を長方形に配列したものを行列と呼びます。ここでは行列とそれについて定義される代数的演算について学びます。

TABLE OF CONTENTS

目次

SECTION 1

行列

行列の概念を定義した上で、行列を被演算子とする演算について解説します。

行列の定義

実数を長方形に配列したものを行列と呼びます。行列を構成する横並びの実数の組を行列の行と呼び、行列を構成する縦並びの実数の組を行列の列と呼びます。

READ MORE »

行列の加法(行列の和)

同じ大きさを持つ2つの行列が与えられたとき、対応する成分どうしを足すことにより得られる新たな行列を行列どうしの和と呼びます。また、2つの行列に対してそれらの和を定める演算を行列加法と呼びます。行列集合は行列加法に関して可換群をなします。

READ MORE »

行列のスカラー乗法(行列のスカラー倍)

行列とスカラーが与えられたとき、行列のそれぞれの成分をスカラー倍することで新たに得られる行列をもとの行列のスカラー倍と呼びます。また、スカラーと行列に対してスカラー倍を定める演算をスカラー乗法と呼びます。

READ MORE »

実行列空間

実数空間をスカラー場とする行列集合上に行列加法とスカラー乗法を定義したとき、これを実行列空間と呼びます。実行列空間はベクトル空間の一例です。

READ MORE »
SECTION 2

準備中

準備中

SECTION 3

準備中

準備中

RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

必須知識

以下の分野の知識があると本節の内容を円滑に学習できます。

実数

実数を特徴づける公理を出発点とした上で、実数空間上に定義された演算、順序、そして実数の連続性などについて議論します。さらに、数列や収束列、実数空間上の位相、実数空間上に定義された関数の性質などについて議論します。

READ MORE »
ADVANCED KNOWLEDGE

発展知識

本節で得た知識は以下の分野を学ぶ上での土台になります。

ユークリッド空間上の点列

ユークリッド空間上の無限個の点を順番に並べたものを点列と呼びます。点列は実数列を一般化した概念です。ここでは点列が収束することの意味を定義した上で、収束点列の性質について解説します。

READ MORE »

ユークリッド位相

ユークリッド距離をもとにユークリッド空間上の開集合と呼ばれる概念を定義した上で、その性質や、関連する概念などについて解説します。

READ MORE »

ベクトル値関数(曲線)

実数空間もしくはその部分集合を定義とし、ユークリッド空間を終集合とする写像を曲線やベクトル値関数などと呼びます。ここでは曲線の収束や連続性などについて解説します。

READ MORE »

多変数関数(スカラー場)

本節ではスカラー場(多変数関数)が有限な実数へ収束することの意味や、スカラー場が連続であることの意味を解説します。本節で得られる知識は後にスカラー場の微分(全微分・方向微分・偏微分)について学ぶ上での前提知識となります。

READ MORE »

ワイズの理念とサービス

REGISTER

プレミアム会員登録

CONTACT

メールフォーム