集合A,Bについて、Aの要素とBの要素が完全に一致する場合にはAとBは等しいといい、そのことをA=Bで表します。AとBが等しいことを、AがBの部分集合であるとともにBがAの部分集合であることとして表現することもできます。
命題関数の真理集合として集合を定義するアプローチはラッセルのパラドクスと呼ばれる問題を引き起こします。このような問題を解消する一つの方法は、集合という概念を公理から定義するというものです。
集合を被演算子とする演算について解説します。
集合 A に属さない要素からなる集合を A の補集合と呼びます。集合 A が命題関数 P(x) から内包的に定義されるとき、A の補集合とは、命題 P(x) が偽になるような要素 x からなる集合です。
集合 A,B の双方に属する要素からなる集合を A と B の共通部分と呼びます。集合 A が命題関数 P(x) から、集合 B が命題関数 Q(x) からそれぞれ内包的に定義されるとき、A と B の共通部分は 2 つの命題 P(x), Q(x) がともに真になるような要素 x からなる集合です。
集合 A,B の少なくとも一方に属する要素からなる集合を A と B の和集合と呼びます。 A が命題関数 P(x) から、集合 B が命題関数 Q(x) からそれぞれ内包的に定義されるとき、A と B の和集合は 2 つの命題 P(x),Q(x) の少なくとも一方が真になるような要素 x からなる集合です。
集合 A に属するが集合 B には属さない要素からなる集合を A と B の差集合と呼び、これを A\B と表記します。A が命題関数 P(x) から、集合 B が命題関数 Q(x) からそれぞれ内包的に定義されるとき、A と B の差集合は P(x) が真で Q(x) が偽であるような要素 x からなる集合です。
集合 A,B のどちらか一方だけに属する要素からなる集合を A と B の対称差と呼びます。集合 A が命題関数 P(x) から、集合 B が命題関数 Q(x) から内包的に定義されるとき、A と B の対称差は P(x) と Q(x) のどちらか一方だけが真になるような要素 x からなる集合です。
集合を変形していく上で役に立つ代表的な法則を紹介します。
同じ集合どうしの共通部分や和集合をとると、それはいずれももとの集合と等しい集合になります。共通部分や和集合が満たすこのような性質をベキ等律と呼びます。
集合 A,B,C が与えられたとき、その中から隣り合う 2 つの集合 A,B を選んで共通部分を適用すれば A∩B を得ます。この集合と残された集合 C に対して再び共通部分を作用させれば (A∩B)∩C を得ます。一方、最初に B,C に対して共通部分を作用させれば最終的に A∩(B∩C) を得ます。この 2 つの集合が一致するというのが結合律の主張です。和集合∪に関しても同様の性質が成り立ちます。
集合 A が与えられたとき、それと任意の集合 B の和集合 A∪B をとります。さらに、この集合ともとの集合 A の共通部分 A∩(A∪B)をとると、集合 A∪B は吸収されて A に戻ってしまうというのが吸収律の主張です。和集合と共通部分を入れ替えた主張も同じく成り立ちます。
任意の集合に対して、空集合との共通部分をとると空集合になり、全体集合との和集合をとると全体集合になります。また、任意の集合に対して、空集合との和集合や全体集合との共通部分をとるといずれももとの集合に戻ります。これを恒等法則と呼びます。
集合の補集合は集合であるため、さらにその補集合をとることができます。そして、この集合はもとの集合と等しいことが保証されます。補集合が満たすこのような性質を二重補集合の法則と呼びます。
集合を要素として持つ集合を集合族と呼びます。
集合族の要素がいずれも集合 A の部分集合であるとき、その集合族を A の部分集合族と呼びます。特に、集合 A のすべての部分集合を要素として持つ A の部分集合族を A のベキ集合と呼びます。
集合族の要素であるすべての集合に含まれる要素からなる集合を集合族の共通部分と定義します。集合族の共通部分は、その集合族の要素である任意の集合に部分集合として含まれる集合の中でも最大のものです。
集合族の要素である少なくとも1つの集合に含まれる要素からなる集合を集合族の和集合と定義します。集合族の和集合は、その集合族の要素である任意の集合を部分集合として含む集合の中でも最小のものです。
集合や集合族の直積などを定義します。
2 つの要素 a,b の順序を考慮して組にしたものを順序対と呼びます。また、集合 A,B の要素からなるすべての順序対からなる集合を A と B の直積と呼びます。
無限個の非空集合が与えられたとき、それぞれの集合から要素を 1 つずつ順番に選び出そうとしても、集合の個数は無限であるため、そのような操作が可能であるかどうかは必ずしも明らかではありません。そのような理念上の操作が可能であることを認めることを選択公理と呼びます。
集合を命題関数を用いて定義するのであれば、本節を学ぶ際に述語論理に関する知識が必須となります。
命題論理の基本単位が命題変数であったのに対し、述語論理では命題関数と呼ばれる概念が基本単位となります。それにより扱うことのできる言明の範囲が広がるとともに、量化と呼ばれる操作が可能になります。
集合は現代数学におけるすべての基礎であるため、本節の内容は数学を学ぶ上で必須です。直接的には以下の分野を学ぶ上で必須です。
初等数学で学んだ「関数」とは、入力した実数に対して何らかの実数を返す概念として理解できます。関数を一般化した概念が写像です。写像とはある集合のそれぞれの要素に対して別の集合の要素を1つずつ定めるような規則のことです。本節では写像について学びます。
複数の物事が互いに関わり合っている状態を「関係」と呼びますが、これは数学的には2つの集合の直積の部分集合として定義されます。関係や二項関係、同値関係などについて解説します。
有限個の要素を持つ集合については、その要素の個数は有限な自然数として表現されます。一方、無限個の要素を持つ集合については、すべての要素を数え尽くすことができないため、要素の個数を自然数として表現できません。集合の濃度とは要素の個数を一般化した概念であり、これを用いることにより無限どうしを比較できるようになります。