関数の定義と具体例
実数空間もしくはその部分集合を始集合とし、実数空間を終集合とする写像を関数と呼びます。つまり、関数とはそれぞれの実数に対して実数を1つずつ定める規則です。
それぞれの実数に対して実数を1つずつ定める規則を関数と呼びます。
実数空間もしくはその部分集合を始集合とし、実数空間を終集合とする写像を関数と呼びます。つまり、関数とはそれぞれの実数に対して実数を1つずつ定める規則です。
関数 f が与えられたとき、実数を成分とする順序対 (x,y) の中でも y=f(x) を満たすようなものからなる集合を f のグラフと呼びます。
関数が始集合のそれぞれの要素に対して定める実数を、その要素の像と呼びます。関数がとり得るすべての値からなる集合を関数の値域と呼びます。
関数による実数の逆像や、関数による実数集合の逆像、また、関数の定義域などについて解説した上で、それらの概念が満たす性質について整理します。
関数 f の値域が関数 g の定義域の部分集合である場合には、f の定義域のそれぞれの値 x に対して g(f(x)) を定めるような関数が定義可能であり、これを f と g の合成写像と呼びます。
関数が全単射である場合には、終集合のそれぞれの要素に対して、その逆像に含まれる唯一の要素を値として定める関数が定義可能であるため、これを逆関数と呼びます。
関数の値域が上に有界である場合、その関数は上に有界であると言います。関数の値域が下に有界である場合、その関数は下に有界であると言います。上に有界かつ下に有界な関数を有界な関数と呼びます。
変数の値が大きくなるにつれて関数の値が大きくなり続けたり小さくなり続ける場合、そのような関数を単調関数と呼びます。
狭義単調関数は全単射であるため、終集合を値域に制限すれば全単射になります。したがって、その逆関数が必ず存在します。特に、狭義単調増加関数の逆関数は狭義単調増加であり、狭義単調減少関数の逆関数は狭義単調減少です。
多項式関数について解説します。
変数の値によらず常に一定の実数を値として定める関数を定数関数と呼びます。定数関数のグラフは水平な直線です。
入力した値に等しい値を返す関数を恒等関数と呼びます。恒等関数は狭義単調増加関数であるとともに、定義域と値域は一致します。したがって、全区間上に定義された恒等関数は逆関数を持ち、それもまた恒等関数になります。また、恒等関数と任意の関数の合成関数もまた恒等関数になります。
実数の定数と非負の整数個の変数の積として表される関数を単項式関数と呼び、単項式関数の和として定義される関数を多項式関数と呼びます。
多項式関数どうしの商として定義される関数を有理関数や分数関数と呼びます。有理関数のグラフを描く際には漸近線を特定する必要があります。
指数関数や対数関数などを定義します。
正の実数であるような底を所与としたとき、指数を変数とし、累乗を値として定めるような関数を指数関数と呼びます。特に、ネイピア数を底とする指数関数を自然指数関数と呼びます。指数関数は正の実数を値としてとる狭義単調関数です。
指数関数の逆関数を対数関数と呼びます。特に、自然指数関数の逆関数を自然対数関数と呼びます。対数関数は狭義単調関数です。
n個の正の実数の積のn乗根を相乗平均や幾何平均などと呼びます。相乗平均の導出方法と応用例について解説します。
ベキ関数について解説します。
次数が自然数であるようなベキ関数を自然数ベキ関数と呼びます。次数が奇数である場合、自然数ベキ関数は狭義単調増加関数になります。次数が偶数である場合、非正の区間において狭義単調減少になり、非負の区間において狭義単調増加になります。
次数が整数であるようなベキ関数を整数ベキ関数と呼びます。次数が負の奇数である場合、整数ベキ関数は狭義単調減少関数になります。次数が負の偶数である場合、負の区間において狭義単調増加であり、正の区間において狭義単調減少です。
指数が自然数であるようなベキ関数の逆関数として定義される関数を無理関数と呼びます。
次数が有理数であるようなベキ関数(累乗関数)を有理数ベキ関数と呼びます。有理数ベキ関数の定義域は次数に応じて変化します。
入力した実数に対して、その絶対値を値として定める関数を絶対値関数と呼びます。絶対値関数は数直線上に定義可能です。
次数が実数であるようなベキ関数を実数ベキ関数と呼びます。次数が正の実数である場合、実数ベキ関数は狭義単調増加関数になります。次数が負の実数である場合、実数ベキ関数は狭義単調減少関数になります。
三角関数について解説します。
角および角度の概念を定義した上で、角度を表現する手法である度数法と弧度法について解説します。度数法は私たちになじみ深い「度」を単位に角度を測る手法である一方、弧度法では「ラジアン」を利用します。
直角三角形を用いて三角比(正弦・余弦・正接)を定義した上で、それを一般化する形で三角比を定義します。
それぞれのラジアンに対してその正弦(サイン)を定める関数を正弦関数(サイン関数)と呼びます。正弦関数のグラフを正弦曲線(サイン・カーブ)と呼びます。
それぞれのラジアンに対してその余弦(コサイン)を定める関数を余弦関数(コサイン関数)と呼びます。余弦関数のグラフを余弦曲線(コサイン・カーブ)と呼びます。
余弦の値が非ゼロになるようなそれぞれのラジアンに対してその正接(タンジェント)を定める関数を正接関数(タンジェント関数)と呼びます。正接関数のグラフを正接曲線(タンジェント・カーブ)と呼びます。
正弦関数(サイン関数)の定義域を適当な形で制限すれば全単射になるため、その逆関数である逆正弦関数(アークサイン関数)を定義することができます。
余弦関数(コサイン関数)の定義域を適当な形で制限すれば全単射になるため、その逆関数である逆余弦関数(アークコサイン関数)を定義することができます。
正接関数(タンジェント関数)の定義域を適当な形で制限すれば全単射になるため、その逆関数である逆正接関数(アークタンジェント関数)を定義することができます。
関数の極限について解説します。
実数の点集合上に定義された実数値関数を議論の対象とした上で、そのような関数が収束することの直感的な意味を解説し、さらにイプシロン・デルタ論法を用いて厳密に定義します。
関数が収束することをイプシロン・デルタ論法を用いて証明するのは困難です。関数が収束する・収束しないことを数列を用いて判定する方法を解説します。
実数の区間上に定義された実数値関数が点において発散することや、無限大や無限小において発散することの意味を解説します。
関数の片側極限について解説します。
関数が点において収束することの定義において、変数がその点に近づいていく際の経路に関して特に制約は設けられていません。一方、変数が点に近づいていく際の経路を指定する形で関数の極限を定義することも可能であり、その場合の極限を片側極限と呼びます。
関数が片側から収束することを示すためにイプシロン・デルタ論法を用いるのは面倒です。数列を用いて片側収束可能性を判定する方法について解説します。
関数が右側極限と左側極限を持つとともにそれらの値が一致することは、通常の極限を持つための必要十分条件です。
関数の変数がある点に右側もしくは左側から近づくときに、変数の値が無限大や無限小へ発散する場合には、それらの極限を片側無限極限と呼びます。
変数が限りなく大きく(小さく)なる場合の関数の極限について解説します。
実数の点集合上に定義された実数値関数について、変数の値が限りなく大きくなる場合や限りなく小さくなる場合の関数の極限を定義します。
変数が限りなく大きくなる場合や限りなく小さくなる場合に関数が有限な実数へ収束することは、数列を用いて表現することもできます。
関数の変数が限りなく大きくなる(限りなく小さくなる)ときに、関数の値が限りなく大きくなる(限りなく小さくなる)状況について考えます。
関数の極限に関する性質について解説します。
有限な実数へ収束する関数は有界であるとは限りませんが、局所有界であることは保証されます。逆に、局所有界な関数は有限な実数へ収束するとは限りません。
区間上に定義された上に有界な単調増加関数や下に有界な単調減少関数は区間の右側の端点において左側収束します。また、下に有界な単調増加関数や上に有界な単調減少関数は区間の左側の端点において右側収束します。
定数関数は定義域上の任意の点において有限な極限・右側極限・左側極限を持ちます。また、正の無限大や負の無限大においても有限な極限を持ちます。
恒等関数は定義域上の任意の点において有限な実数へ収束する一方、正の無限大において正の無限大へ発散し、負の無限大において負の無限大に発散します。
収束する関数を定数倍して得られる関数もまた収束し、新たな関数の極限はもとの関数の極限の定数倍になります。また、このような関係は無限極限に関しても拡張可能です。
収束する関数どうしの和として得られる関数もまた収束し、新たな関数の極限はもとの関数の極限の和になります。また、このような関係は無限極限に関しても拡張可能です。
収束する関数どうしの差として得られる関数もまた収束し、新たな関数の極限はもとの関数の極限の差になります。また、このような関係は一定の条件のもとで無限極限に関しても拡張可能です。
収束する関数どうしの積として得られる関数もまた収束し、新たな関数の極限はもとの関数の極限の積になります。また、このような関係は一定の条件のもとで無限極限に関しても拡張可能です。
収束する関数どうしの商として得られる関数もまた収束し、新たな関数の極限はもとの関数の極限の商になります。
多項式関数の極限、片側極限、および無限大における極限を求める方法を解説します。
有理関数の極限、片側極限、および無限大における極限を求める方法を解説します。
合成関数が有限な実数へ収束するための条件を明らかにするとともに、その極限を具体的に求める方法を解説します。
定義域を共有する2つの収束関数について、一方の関数が定める値が他方の関数が定める値以上であるとき、両者の極限についても同様の大小関係が成り立ちます。また、はさみうちの定理と呼ばれる有益な命題についても解説します。
関数の極限をそのままでは特定するのが難しい場合、変数を変換することにより極限を容易に特定できるようになる場合があります。変数を変換した上で関数の極限を特定する方法について解説します。
代表的な関数の極限について解説します。
指数関数や自然指数関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
対数関数や自然対数関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
ネイピア数(自然対数の底)の定義を利用することにより関数の極限に関する有用な公式を導くことができます。
自然数を指数として持つベキ関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
整数を指数として持つベキ関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
無理関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
有理数ベキ関数(累乗関数)について、その極限、片側極限、および無限大における極限を求める方法を解説します。
絶対値関数の極限、片側極限、無限大における極限を求める方法について解説します。
無理数を含めた実数を指数として持つベキ関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
正弦関数(sin関数・サイン関数)について、その極限、片側極限、および無限大における極限を求める方法を解説します。
余弦関数(cos関数・コサイン関数)について、その極限、片側極限、および無限大における極限を求める方法を解説します。
正接関数(tan関数・タンジェント)の極限について、その極限、片側極限、および無限大における極限を求める方法を解説します。
関数 sin(x)/x の点0における極限および無限大における極限を求めます。この関数の極限を利用することにより正弦関数に関する様々な関数の極限を容易に導出できるようになります。加えて、三角関数の微分について考える際にもこの関数は重要な役割を果たします。
逆正弦関数(arcsin関数・アークサイン関数)や逆正弦関数との合成関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
逆余弦関数(arccos関数・アークコサイン関数)や逆余弦関数との合成関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
逆正接関数(arctan関数・アークタンジェント関数)や逆正接関数との合成関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。
不定形と呼ばれるタイプの極限を定義するとともに、不定形を解消する方法を解説します。
2つの関数の商として定義されている関数について、分子の関数と分母の関数がともにゼロへ収束する場合、もとの関数の極限を0/0型の不定形と呼びます。不定形の極限は有限な実数として定まる場合とそうでない場合の両方が起こり得ます。
2つの関数の商として定義されている関数について、分子の関数と分母の関数がともに無限大へ発散する場合、もとの関数の極限を∞/∞型の不定形と呼びます。不定形の極限は有限な実数として定まる場合とそうでない場合の両方が起こり得ます。
2つの関数の積として定義されている関数について、一方がゼロへ収束する一方で他方が無限大へ発散する場合、もとの関数の極限を0×∞型の不定形と呼びます。不定形の極限は有限な実数として定まる場合とそうでない場合の両方が起こり得ます。
2つの関数の差として定義されている関数について、2つの関数がともに正の無限大へ発散する場合、もしくはともに負の無限大へ発散する場合、もとの関数の極限を∞-∞型の不定形と呼びます。不定形の極限は有限な実数として定まる場合とそうでない場合の両方が起こり得ます。
関数の関数べき乗として定義される関数について、底に相当する関数が1へ収束する一方で指数に相当する関数が無限大へ発散する場合、もとの関数の極限を1^∞型の不定形と呼びます。
関数の関数べき乗として定義される関数について、底に相当する関数と指数に相当する関数がともに0へ収束する場合、もとの関数の極限を00型の不定形と呼びます。
関数の関数べき乗として定義される関数について、底に相当する関数が無限大へ発散する一方で指数に相当する関数が0へ収束する場合、もとの関数の極限を∞0型の不定形と呼びます。
関数の極限が不定形である場合でも、関数を変形してから極限をとることにより不定形を解消できる場合があります。約分、因数分解、有理化などを通じて不定形を解消する方法を解説します。
関数の極限が不定形である場合でも、関数の極限公式を用いることにより不定形を解消できる場合があります。三角関数やネイピア数に関する極限公式を用いて不定形を解消する方法を解説します。
0/0型の不定形の極限が有限な実数として定まるかを判定する際に、一定の条件のもとでは微分を利用できます。これをロピタルの定理と呼びます。
∞/∞型の不定形の極限が有限な実数として定まるかを判定する際に、一定の条件のもとでは微分を利用できます。これをロピタルの定理と呼びます。
関数が連続であることの意味を解説します。
関数の変数が定義域上のある点に限りなく近づくにつれて関数の値が有限な極限へ収束するとともに、その点における関数の値が先の極限と一致する場合、関数はその点において連続であると言います。
関数が連続であることを定義する際に、関数の極限の概念を経由せず、イプシロン・デルタ論法を用いることもできます。
関数が定義域上の点において連続であること、連続ではないことを数列を用いて判定する方法を解説します。
関数による任意の開集合の逆像が開集合であることは、その関数が定義域上において連続であるための必要十分条件です。また、関数による任意の有界開区間の逆像が開集合であることもまた、関数が連続であるための必要十分条件です。
関数が上半連続であること、および下半連続の意味を方位集合と呼ばれる概念を用いて定義します。関数が上半連続かつ下半連続であることはその関数が連続であるための必要十分条件です。
代表的な関数の連続性を示すとともに、連続関数の性質を解説します。
関数が定義域上の点において右側極限を持つとともに、それがその点における関数の値と一致する場合、その関数はその点において右側連続であると言います。また、関数が定義域上の点において左側極限を持つとともに、それがその点における関数の値と一致する場合、その関数はその点において左側連続であると言います。
関数が片側連続(右側連続・左側連続)であることをイプシロン・デルタ論法を用いて表現することができます。
関数が片側連続(右側連続・左側連続)であることを数列を用いて判定する方法について解説します。
関数が定義域上の点において連続であるとき、その点を連続点と呼びます。一方、関数が定義域上の点において連続ではないとき、その点を不連続点と呼びます。不連続点は第1種と第2種の2種類に分類され、さらに第1種の不連続点は除去可能な不連続点と跳躍不連続点に分類されます。
代表的な関数の連続性を示すとともに、連続関数の性質を解説します。
定数関数は定義域上の任意の点において連続および片側連続です。
恒等関数は連続関数です。
連続な関数の定数倍として定義される関数もまた連続です。同様に、片側連続(右側連続・左側連続)な関数の定数倍として定義される関数もまた片側連続です。
連続な関数どうしの和として定義される関数もまた連続です。同様に、片側連続(右側連続・左側連続)な関数どうしの和として定義される関数もまた片側連続です。
連続な関数どうしの差として定義される関数もまた連続です。同様に、片側連続(右側連続・左側連続)な関数どうしの差として定義される関数もまた片側連続です。
連続な関数どうしの積として定義される関数もまた連続です。同様に、片側連続(右側連続・左側連続)な関数どうしの積として定義される関数もまた片側連続です。
連続な関数どうしの商として定義される関数もまた連続です。同様に、片側連続(右側連続・左側連続)な関数どうしの商として定義される関数もまた片側連続です。
多項式関数は連続関数です。
有理関数は連続関数です。
連続な関数どうしの合成関数もまた連続関数になります。
有界な閉区間上に定義された連続関数が定義域の左右の端点において異なる値をとるとき、中間値の定理と呼ばれる命題が成立します。
有界な閉区間上に定義された連続関数は定義域上の点において最大値や最小値を取ります。これを最大値・最小値の定理と呼びます。
有界な閉区間上に定義された連続関数による定義域の像もまた有界な閉区間になります。また、区間上に定義された連続関数による定義域の像もまた区間になります。
区間上に定義された連続な狭義単調関数の逆関数もまた区間上に定義された連続な狭義単調関数になります。定義域が区間ではない場合、同様の主張は成り立つとは限りません。
有界閉区間上に定義された関数の値域が定義域の部分集合であるとともに、その関数が連続である場合や、単調増加である場合などには、その関数は不動点を持つことが保証されます。
指数関数は連続関数です。
対数関数は連続関数です。
指数が自然数であるようなベキ関数は連続関数です。
次数が整数であるようなベキ関数(累乗関数)は連続関数です。
無理関数は連続関数です。
有理数ベキ関数は連続関数です。
絶対値関数は連続関数です。
実数ベキ関数は連続関数です。
正弦関数(サイン関数)は定義域上において連続です。
余弦関数(コサイン関数)は定義域上において連続です。
正接関数(タンジェント関数)は定義域上において連続です。
逆正弦関数(arcsin関数・アークサイン関数)は連続です。
逆余弦関数(arccos関数・アークコサイン)は連続です。
逆正接関数(arctan関数・アークタンジェント)は連続です。
関数が一様連続であることの意味を定義します。
1変数関数が一様連続であることの意味を定義するとともに、関数が一様連続であること、ないし一様連続ではないことを判定する方法について解説します。
1変数関数が一様連続であること、ないし一様連続ではないことを数列を用いて判定する方法を解説します。また、一様連続関数によるコーシー列の像はコーシー列になることを示します。
一様連続な1変数関数は連続である一方、連続関数は一様連続であるとは限りません。ただ、連続関数の定義域がコンパクト集合である場合、その関数が一様連続であることが保証されます。
関数が絶対連続であることの意味を定義します。
有界閉区間上に定義された関数が絶対連続であることの意味を定義するとともに、関数が絶対連続であること、ないし絶対連続ではないことを判定する方法を解説します。
有界閉区間上に定義された絶対連続関数は一様連続であることが保証される一方で、一様連続関数は絶対連続関数であるとは限りません。一様連続関数は連続であるため、絶対連続関数は連続です。
リプシッツ関数を定義します。
リプシッツ関数(リプシッツ連続関数)の概念を定義するとともに、その意味を解説します。加えて、関数がリプシッツ連続であること、リプシッツ連続ではないことを判定する方法を解説します。
有界閉区間上に定義されたリプシッツ関数は絶対連続関数であることが保証される一方で、絶対連続関数はリプシッツ関数であるとは限りません。絶対連続関数は一様連続であり、一様連続関数は連続であるため、リプシッツ関数は一様連続かつ連続です。
有界変動関数を定義します。
関数の定義域である有界閉区間をどのような形で分割した場合においても、それぞれの小区間における関数の値の差の総和が有限な値に収まる場合、その関数は有界変動であると言います。
有界変動関数は有界関数です。対偶より、有界ではない関数は有界変動関数ではありません。その一方で、有界関数は有界変動関数であるとは限りません。
有界変動関数の定数倍として定義される関数もまた有界変動です。さらに、もとの関数の全変動の定数倍をとれば、その関数の定数倍の全変動が得られます。
有界変動関数どうしの和として定義される関数もまた有界変動です。さらに、その関数の全変動は、個々の関数の全変動の和以下になります。
有界変動関数どうしの差として定義される関数もまた有界変動です。さらに、その関数の全変動は、個々の関数の全変動の和以下になります。
有界変動関数どうしの積として定義される関数もまた有界変動です。
有界変動関数の逆数として定義される関数や、有界変動関数どうしの商として定義される関数が有界変動になるための条件を明らかにします。
関数が有界閉区間上で有界変動であることと、それぞれの小区間において有界変動であることが必要十分です。しかも、それぞれの小区間における全変動の総和をとれば、もとの区間における全変動が得られます。
関数が有界閉区間上で有界変動であることと、その関数が2つの(狭義)単調増加関数の差として表されることは必要十分条件です。
有界閉区間上に定義された有界変動関数は連続であるとは限らず、逆に、連続関数は有界変動であるとは限りません。その一方で、有界変動関数はほとんどいたるところで連続です。
有界閉区間上に定義された絶対連続関数は有界変動関数ですが、有界変動関数は絶対連続関数であるとは限りません。また、絶対連続関数は2つの単調増加な連続関数の差として表されます。
関数の極限を一般化した上極限および下極限について解説します。
関数の上極限と下極限を定義します。関数が局所有界である場合、その上極限と下極限がそれぞれ有限な実数として定まることが保証されます。
関数の上極限や下極限が有限な実数として定まる場合には、それを数列の極限を用いて表現することができます。
関数の上極限と下極限が有限な実数として定まるとともに両者が一致することは、その関数が有限な実数へ収束するための必要十分条件です。しかもその場合、極限は上極限や下極限と一致します。
本節の内容を理解する上で以下の知識が役に立ちます。
本節で得た知識は以下の分野を学ぶ上での基礎になります。
1変数関数の微分の概念を定義した上で、微分の基本性質や初等関数の微分、平均値の定理、高階の微分、テイラーの定理などについて学びます。これらの知識は後に1変数関数を目的関数とする最適化について学ぶ上での基盤になります。