WIIS

関数

不定形の極限(0×∞型)

目次

Mailで保存
Xで共有

不定形の極限(0×∞型)

定義域を共有する2つの関数\begin{eqnarray*}
f &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \\
g &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \end{eqnarray*}が与えられた状況において、点\(a\in \mathbb{R} \)を任意に選びます。ただし、関数\(f,g\)はともに点\(a\)の周辺の任意の点において定義されているものとします。この場合、点\(a\)の周辺の任意の点\(x\in X\)において以下の関数\begin{equation*}f\left( x\right) \cdot g\left( x\right)
\end{equation*}は定義されていることになるため、\(x\rightarrow a\)の場合の極限\begin{equation*}\lim_{x\rightarrow a}\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}が有限な実数として定まるか検討できます。その上で、以下の2つの条件\begin{eqnarray*}
&&\left( a\right) \ \lim_{x\rightarrow a}f\left( x\right) =0 \\
&&\left( b\right) \ \lim_{x\rightarrow a}g\left( x\right) =\pm \infty
\end{eqnarray*}がともに成り立つ状況を想定します。この場合、2つの関数\(f\left(x\right) ,g\left( x\right) \)の極限を別々にとると、\begin{equation*}\lim_{x\rightarrow a}f\left( x\right) \cdot \lim_{x\rightarrow a}g\left(
x\right) =0\cdot \left( \pm \infty \right)
\end{equation*}という不定形になってしまいます。このような場合には、もとの関数\(f\left( x\right) \cdot g\left( x\right) \)の極限\begin{equation*}\lim_{x\rightarrow a}\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}を\(0\times \infty \)型の不定形(indeterminate form of type \(0\cdot \infty \))と呼びます。

後ほど示すように、不定形の極限は有限な実数へ定まる場合とそうでない場合の両方が起こり得ます。

例(0×∞型の不定形)
以下の関数\begin{equation*}
\left( x^{2}-1\right) \left( \frac{1}{x-1}\right) :\mathbb{R} \backslash \left\{ 1\right\} \rightarrow \mathbb{R} \end{equation*}について、\(x\rightarrow 1\)の場合の極限に注目します。左側の関数については、\begin{equation*}\lim_{x\rightarrow 1}\left( x^{2}-1\right) =0
\end{equation*}が成り立ち、右側の関数については、\begin{equation*}
\lim_{x\rightarrow 1}\left( \frac{1}{x-1}\right) =+\infty
\end{equation*}が成り立つため、以下の極限\begin{equation*}
\lim_{x\rightarrow 1}\left( x^{2}-1\right) \left( \frac{1}{x-1}\right)
\end{equation*}は\(0\times \infty \)型の不定形です。ちなみに、\begin{eqnarray*}\lim_{x\rightarrow 1}\left( x^{2}-1\right) \left( \frac{1}{x-1}\right)
&=&\lim_{x\rightarrow 1}\frac{\left( x+1\right) \left( x-1\right) }{x-1} \\
&=&\lim_{x\rightarrow 1}\left( x+1\right) \\
&=&2
\end{eqnarray*}となるため、この場合の不定形の極限は有限な実数として定まります。

 

不定形の片側極限(0×∞型)

片側極限についても同様に考えます。まず、不定形の右側極限は以下のように定義されます。

定義域を共有する2つの関数\begin{eqnarray*}
f &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \\
g &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \end{eqnarray*}が与えられた状況において、点\(a\in \mathbb{R} \)を任意に選びます。ただし、関数\(f,g\)はともに点\(a\)より大きい周辺の任意の点において定義されているものとします。この場合、点\(a\)より大きい周辺の任意の点\(x\in X\)において以下の関数\begin{equation*}f\left( x\right) \cdot g\left( x\right)
\end{equation*}は定義されていることになるため、\(x\rightarrow a+\)の場合の右側極限\begin{equation*}\lim_{x\rightarrow a+}\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}が有限な実数として定まるか検討できます。その上で、以下の2つの条件\begin{eqnarray*}
&&\left( a\right) \ \lim_{x\rightarrow a+}f\left( x\right) =0 \\
&&\left( b\right) \ \lim_{x\rightarrow a+}g\left( x\right) =\pm \infty
\end{eqnarray*}がともに成り立つ状況を想定します。この場合、2つの関数\(f\left(x\right) ,g\left( x\right) \)の右側極限を別々にとると、\begin{equation*}\lim_{x\rightarrow a+}f\left( x\right) \cdot \lim_{x\rightarrow a+}g\left(
x\right) =0\cdot \left( \pm \infty \right)
\end{equation*}という不定形になってしまいます。このような場合には、もとの関数\(f\left( x\right) \cdot g\left( x\right) \)の右側極限\begin{equation*}\lim_{x\rightarrow a+}\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}を\(0\times \infty \)型の不定形(indeterminate form of type \(0\cdot \infty \))と呼びます。

後ほど示すように、不定形の右側極限は有限な実数へ定まる場合とそうでない場合の両方が起こり得ます。

例(0×∞型の不定形)
以下の関数\begin{equation*}
\tan \left( x\right) \cdot \frac{1}{x}:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}について、\(x\rightarrow 0+\)の場合の極限に注目します。ただし、\begin{equation*}X=\left\{ x\in \mathbb{R} \ |\ \cos \left( x\right) \not=0\wedge x\not=0\right\}
\end{equation*}です。左側の関数については、\begin{equation*}
\lim_{x\rightarrow 0+}\tan \left( x\right) =0
\end{equation*}が成り立ち、右側の関数については、\begin{equation*}
\lim_{x\rightarrow 0+}\left( \frac{1}{x}\right) =+\infty
\end{equation*}が成り立つため、以下の極限\begin{equation*}
\lim_{x\rightarrow 0+}\left( \tan \left( x\right) \cdot \frac{1}{x}\right)
\end{equation*}は\(0\times \infty \)型の不定形です。ちなみに、\begin{eqnarray*}\lim_{x\rightarrow 0+}\left( \tan \left( x\right) \cdot \frac{1}{x}\right)
&=&\lim_{x\rightarrow 0+}\left( \frac{\tan \left( x\right) }{x}\right) \\
&=&\lim_{x\rightarrow 0+}\left( \frac{\sin \left( x\right) }{x\cos \left(
x\right) }\right) \\
&=&\lim_{x\rightarrow 0+}\left( \frac{\sin \left( x\right) }{x}\right) \cdot
\lim_{x\rightarrow 0+}\left( \frac{1}{\cos \left( x\right) }\right) \\
&=&1\cdot \frac{1}{1} \\
&=&1
\end{eqnarray*}となるため、この場合の不定形の極限は有限な実数として定まります。

不定形の左側極限も同様に定義します。具体的には以下の通りです。

定義域を共有する2つの関数\begin{eqnarray*}
f &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \\
g &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \end{eqnarray*}が与えられた状況において、点\(a\in \mathbb{R} \)を任意に選びます。ただし、関数\(f,g\)はともに点\(a\)より小さい周辺の任意の点において定義されているものとします。この場合、点\(a\)より小さい周辺の任意の点\(x\in X\)において以下の関数\begin{equation*}f\left( x\right) \cdot g\left( x\right)
\end{equation*}は定義されていることになるため、\(x\rightarrow a-\)の場合の左側極限\begin{equation*}\lim_{x\rightarrow a-}\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}が有限な実数として定まるか検討できます。その上で、以下の2つの条件\begin{eqnarray*}
&&\left( a\right) \ \lim_{x\rightarrow a-}f\left( x\right) =0 \\
&&\left( b\right) \ \lim_{x\rightarrow a-}g\left( x\right) =\pm \infty
\end{eqnarray*}がともに成り立つ状況を想定します。この場合、2つの関数\(f\left(x\right) ,g\left( x\right) \)の左側極限を別々にとると、\begin{equation*}\lim_{x\rightarrow a-}f\left( x\right) \cdot \lim_{x\rightarrow a-}g\left(
x\right) =0\cdot \left( \pm \infty \right)
\end{equation*}という不定形になってしまいます。このような場合には、もとの関数\(f\left( x\right) \cdot g\left( x\right) \)の左側極限\begin{equation*}\lim_{x\rightarrow a-}\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}を\(0\times \infty \)型の不定形(indeterminate form of type \(0\cdot \infty \))と呼びます。

後ほど示すように、不定形の左側極限は有限な実数へ定まる場合とそうでない場合の両方が起こり得ます。

 

不定形の無限大における極限(0×∞型)

無限大における極限についても同様に考えます。まず、不定形の正の無限大における極限は以下のように定義されます。

定義域を共有する2つの関数\begin{eqnarray*}
f &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \\
g &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \end{eqnarray*}がともに限りなく大きい任意の点において定義されているものとします。この場合、限りなく大きい任意の点\(x\in X\)において以下の関数\begin{equation*}f\left( x\right) \cdot g\left( x\right)
\end{equation*}は定義されていることになるため、\(x\rightarrow+\infty \)の場合の極限\begin{equation*}\lim_{x\rightarrow +\infty }\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}が有限な実数として定まるか検討できます。その上で、以下の2つの条件\begin{eqnarray*}
&&\left( a\right) \ \lim_{x\rightarrow +\infty }f\left( x\right) =0 \\
&&\left( b\right) \ \lim_{x\rightarrow +\infty }g\left( x\right) =\pm \infty
\end{eqnarray*}がともに成り立つ状況を想定します。この場合、2つの関数\(f\left(x\right) ,g\left( x\right) \)の極限を別々にとると、\begin{equation*}\lim_{x\rightarrow +\infty }f\left( x\right) \cdot \lim_{x\rightarrow
+\infty }g\left( x\right) =0\cdot \left( \pm \infty \right)
\end{equation*}という不定形になってしまいます。このような場合には、もとの関数\(f\left( x\right) \cdot g\left( x\right) \)の極限\begin{equation*}\lim_{x\rightarrow +\infty }\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}を\(0\times \infty \)型の不定形(indeterminate form of type \(0\cdot \infty \))と呼びます。

後ほど示すように、不定形の極限は有限な実数へ定まる場合とそうでない場合の両方が起こり得ます。

例(0×∞型の不定形)
以下の関数\begin{equation*}
\frac{3}{x}\cdot x:\mathbb{R} \backslash \left\{ 0\right\} \rightarrow \mathbb{R} \end{equation*}について、\(x\rightarrow +\infty \)の場合の極限に注目します。左側の関数については、\begin{equation*}\lim_{x\rightarrow +\infty }\left( \frac{3}{x}\right) =0
\end{equation*}が成り立ち、右側の関数については、\begin{equation*}
\lim_{x\rightarrow +\infty }x=+\infty
\end{equation*}が成り立つため、以下の極限\begin{equation*}
\lim_{x\rightarrow +\infty }\left( \frac{3}{x}\cdot x\right)
\end{equation*}は\(0\cdot \infty \)型の不定形です。ちなみに、\begin{eqnarray*}\lim_{x\rightarrow +\infty }\left( \frac{3}{x}\cdot x\right)
&=&\lim_{x\rightarrow +\infty }3 \\
&=&3
\end{eqnarray*}となるため、この場合の不定形の極限は有限な実数として定まります。

不定形の負の無限大における極限も同様に定義します。具体的には以下の通りです。

定義域を共有する2つの関数\begin{eqnarray*}
f &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \\
g &:&\mathbb{R} \supset X\rightarrow \mathbb{R} \end{eqnarray*}がともに限りなく小さい任意の点において定義されているものとします。この場合、限りなく小さい任意の点\(x\in X\)において以下の関数\begin{equation*}f\left( x\right) \cdot g\left( x\right)
\end{equation*}は定義されていることになるため、\(x\rightarrow-\infty \)の場合の極限\begin{equation*}\lim_{x\rightarrow -\infty }\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}が有限な実数として定まるか検討できます。その上で、以下の2つの条件\begin{eqnarray*}
&&\left( a\right) \ \lim_{x\rightarrow -\infty }f\left( x\right) =0 \\
&&\left( b\right) \ \lim_{x\rightarrow -\infty }g\left( x\right) =\pm \infty
\end{eqnarray*}がともに成り立つ状況を想定します。この場合、2つの関数\(f\left(x\right) ,g\left( x\right) \)の極限を別々にとると、\begin{equation*}\lim_{x\rightarrow -\infty }f\left( x\right) \cdot \lim_{x\rightarrow
-\infty }g\left( x\right) =0\cdot \left( \pm \infty \right)
\end{equation*}という不定形になってしまいます。このような場合には、もとの関数\(f\left( x\right) \cdot g\left( x\right) \)の極限\begin{equation*}\lim_{x\rightarrow -\infty }\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}を\(0\times \infty \)型の不定形(indeterminate form of type \(0\cdot \infty \))と呼びます。

後ほど示すように、不定形の極限は有限な実数へ定まる場合とそうでない場合の両方が起こり得ます。

 

不定形の極限は有限な実数であるとは限らない

関数\(f\left( x\right) \cdot g\left( x\right) \)を構成する\(f\left( x\right) \)が\(0\)が収束する一方で\(g\left( x\right) \)が無限大へ発散する場合に関数\(f\left( x\right) \cdot g\left( x\right) \)が有限な実数へ収束する事態は起こり得ます。その一方で、同様の状況において関数\(f\left( x\right) \cdot g\left( x\right) \)は常に有限な実数へ収束するとは限りません。以下の例より明らかです。

例(不定形の極限は有限な実数であるとは限らない)
以下の関数\begin{equation*}
\frac{3}{x^{2}}\cdot x:\mathbb{R} \backslash \left\{ 0\right\} \rightarrow \mathbb{R} \end{equation*}について、\(x\rightarrow +\infty \)の場合の極限に注目します。左側の関数については、\begin{equation*}\lim_{x\rightarrow +\infty }\left( \frac{3}{x^{2}}\right) =0
\end{equation*}が成り立ち、右側の関数については、\begin{equation*}
\lim_{x\rightarrow +\infty }x=+\infty
\end{equation*}が成り立つため、以下の極限\begin{equation*}
\lim_{x\rightarrow +\infty }\left( \frac{3}{x^{2}}\cdot x\right)
\end{equation*}は\(0\times \infty \)型の不定形です。その一方で、\begin{eqnarray*}\lim_{x\rightarrow +\infty }\left( \frac{3}{x^{2}}\cdot x\right)
&=&\lim_{x\rightarrow +\infty }\left( \frac{3}{x}\right) \\
&=&+\infty
\end{eqnarray*}となります。

 

不定形の極限が存在するか容易に判定できるとは限らない

関数\(f\left( x\right) \cdot g\left( x\right) \)を構成する\(f\left( x\right) \)が\(0\)が収束する一方で\(g\left( x\right) \)が無限大へ発散する場合、関数\(f\left( x\right) \cdot g\left( x\right) \)が有限な実数へ収束するか判定するのは必ずしも容易ではありません。

例(不定形の極限が存在するか容易に判定できるとは限らない)
以下の関数\begin{equation*}
x\left( \frac{\pi }{2}-\arctan \left( x\right) \right) :\mathbb{R} \rightarrow \mathbb{R} \end{equation*}について、\(x\rightarrow +\infty \)の場合の極限に注目します。左側の関数については、\begin{equation*}\lim_{x\rightarrow +\infty }x=+\infty
\end{equation*}が成り立ち、右側の関数については、\begin{eqnarray*}
\lim_{x\rightarrow +\infty }\left( \frac{\pi }{2}-\arctan \left( x\right)
\right) &=&\lim_{x\rightarrow +\infty }\left( \frac{\pi }{2}\right)
-\lim_{x\rightarrow +\infty }\arctan \left( x\right) \\
&=&\frac{\pi }{2}-\frac{\pi }{2} \\
&=&0
\end{eqnarray*}が成り立つため、以下の極限\begin{equation*}
\lim_{x\rightarrow +\infty }x\left( \frac{\pi }{2}-\arctan \left( x\right)
\right)
\end{equation*}は\(0\times \infty \)型の不定形です。ただ、この極限が有限な実数として定まるか判定するのは困難です。

以上の例が示唆するように、不定形の極限が存在するかの判定は必ずしも容易ではないため、何らかの工夫が必要です。具体的な方法については場を改めて解説します。

 

0/0型や∞/∞型の不定形への変換

関数の極限\begin{equation*}
\lim_{x\rightarrow a}\left[ f\left( x\right) \cdot g\left( x\right) \right] \end{equation*}が\(0\times \infty \)型の不定形であるものとします。つまり、\begin{eqnarray*}&&\left( a\right) \ \lim_{x\rightarrow a}f\left( x\right) =0 \\
&&\left( b\right) \ \lim_{x\rightarrow a}g\left( x\right) =\pm \infty
\end{eqnarray*}がともに成り立つということです。このとき、\begin{equation*}
\lim_{x\rightarrow a}\left[ f\left( x\right) \cdot g\left( x\right) \right] =\lim_{x\rightarrow a}\frac{f\left( x\right) }{\frac{1}{g\left( x\right) }}
\end{equation*}と変形すれば、\(\left( a\right),\left( b\right) \)より、\begin{eqnarray*}&&\left( c\right) \ \lim_{x\rightarrow a}f\left( x\right) =0 \\
&&\left( d\right) \ \lim_{x\rightarrow a}\frac{1}{g\left( x\right) }=0
\end{eqnarray*}となるため、\(0\times \infty \)型の不定形を\(\frac{0}{0}\)型の不定形へ変形できることが明らかになりました。また、\begin{equation*}\lim_{x\rightarrow a}\left[ f\left( x\right) \cdot g\left( x\right) \right] =\lim_{x\rightarrow a}\frac{g\left( x\right) }{\frac{1}{f\left( x\right) }}
\end{equation*}と変形すれば、\(\left( a\right),\left( b\right) \)より、\begin{eqnarray*}&&\left( e\right) \ \lim_{x\rightarrow a}g\left( x\right) =\pm \infty \\
&&\left( f\right) \ \lim_{x\rightarrow a}\frac{1}{f\left( x\right) }=+\infty
\end{eqnarray*}となるため、\(0\times \infty \)型の不定形を\(\frac{\infty }{\infty }\)型の不定形へ変形できることが明らかになりました。\(0\times \infty \)型の不定形は\(\frac{0}{0}\)型または\(\frac{\infty }{\infty }\)型の不定形へ変換できるということです。

不定形の片側極限や無限大における極限についても同様の変形が可能です。

 

演習問題

問題(不定形の極限)
以下の極限\begin{equation*}
\lim_{x\rightarrow +\infty }\left( x\cdot \sin \left( \frac{1}{x}\right)
\right)
\end{equation*}が\(0\times \infty \)型の不定形であることを示すとともに、可能である場合には極限を具体的に求めてください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(不定形の極限)
以下の極限\begin{equation*}
\lim_{x\rightarrow +\infty }\left( x\cdot \tan \left( \frac{1}{x}\right)
\right)
\end{equation*}が\(0\times \infty \)型の不定形であることを示すとともに、可能である場合には極限を具体的に求めてください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

Mailで保存
Xで共有

質問とコメント

プレミアム会員専用コンテンツです

会員登録

有料のプレミアム会員であれば、質問やコメントの投稿と閲覧、プレミアムコンテンツ(命題の証明や演習問題とその解答)へのアクセスなどが可能になります。

ワイズのユーザーは年齢・性別・学歴・社会的立場などとは関係なく「学ぶ人」として対等であり、お互いを人格として尊重することが求められます。ユーザーが快適かつ安心して「学ぶ」ことに集中できる環境を整備するため、広告やスパム投稿、他のユーザーを貶めたり威圧する発言、学んでいる内容とは関係のない不毛な議論などはブロックすることになっています。詳細はガイドラインをご覧ください。

誤字脱字、リンク切れ、内容の誤りを発見した場合にはコメントに投稿するのではなく、以下のフォームからご連絡をお願い致します。

プレミアム会員専用コンテンツです
ログイン】【会員登録