WIIS

METRIC SPACE

距離空間の定義

OVERVIEW

距離空間とは何か

私たちが一般に想像する「距離」とはユークリッド距離ですが、公理主義にもとづいて距離という概念を定義する場合、ユークリッド距離は数ある距離概念の中の1つに過ぎません。公理主義の立場から距離空間と呼ばれる概念を定義します。
TABLE OF CONTENTS

目次

METRIC SPACE

距離空間

命題論理の基本単位である「論理式」と呼ばれる概念を形式的に定義します。

距離空間の定義と具体例

公理主義の立場から「距離」の概念を定義します。公理主義にもとづいて距離という概念を定義する場合、ユークリッド距離に限定されない様々な数学的対象が距離とみなされます。

距離空間における集合間の距離

距離関数は距離空間に属する2つの点の間の距離を定めますが、距離関数を活用することにより、距離空間の部分集合の間の距離や、点と部分集合の間の距離を定義できます。

距離空間における集合の直径

距離関数は距離空間に属する2つの点の間の距離を定めますが、距離関数を活用することにより、距離空間の部分集合の直径を定義できます。

等長な距離空間

距離空間X上に存在する2つの点を写像fを通じて距離空間Y上の点に変換しても2つの点の間の距離が変わらない場合、fを等長写像と呼びます。また、全単射であるような等長写像が存在する場合、XとYは距離空間として等長であると言います。

部分距離空間

距離空間の非空な部分集合が与えられたとき、それにあわせて距離関数の定義域を制限すれば、その部分集合自身もまた距離空間になります。このような距離空間をもとの距離空間の部分距離空間と呼びます。

直積距離空間の定義と具体例

有限個の距離空間の直積上に定義される距離関数を直積距離と呼びます。また、距離空間の直積と直積距離の組を直積距離空間と呼びます。マンハッタン直積距離、ユークリッド直積距離、チェビシェフ直積距離などは直積距離です。

BOUNDEDNESS

有界集合・全有界集合

距離空間もしくはその部分集合が有界であること、全有界であることについて解説します。

距離空間における全有界集合(全有界な距離空間)

距離空間の部分集合に対して正の実数を任意に選んだとき、その実数を半径とする有限個の近傍によってその集合を必ず覆うことができる場合、そのような集合は全有界であると言います。全有界な集合は有界である一方で、有界な集合は全有界であるとは限りません。

EXAM

確認テスト

確認テストです。

RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

前提知識

本節を学ぶ上で以下の知識が役に立ちます。

ユークリッド空間

ユークリッド空間を定義した上で、そこでの点列や位相の性質および各種の写像(ベクトル値関数・多変数関数・多変数のベクトル値関数)の極限や連続性などについて解説します。これらの知識は後に微分や積分について学ぶ際の土台となります。

集合

集合に関するテキストと演習問題です。集合、写像、同値関係、集合の濃度などについて解説します。

ADVANCED KNOWLEDGE

発展知識

本節で得た知識は以下の分野を学ぶ上での基礎になります。

距離空間上の点列

距離空間に属する無限個の点を順番に並べたものを点列と呼びます。点列を定義するとともに、その極限など、基本的な概念について解説します。

距離空間の位相

距離空間上の点の近傍を出発点に、開集合や閉集合などの諸概念を定義し、それらの概念が満たす性質について解説します。

ワイズの理念とサービス

REGISTER

プレミアム会員登録

CONTACT

メールフォーム