WIIS

EXTENDED REAL LINE

拡大実数系

OVERVIEW

拡大実数系

すべての実数に正の無限大と負の無限大を加えることにより得られる集合を拡大実数系と呼びます。拡大実数系の位相や拡大実数列、拡大実数値関数などについて解説します。
TABLE OF CONTENTS

目次

EXTENDED REAL LINE

拡大実数系

拡大実数系を定義します。

拡大実数系における距離

拡大実数系は区間と位相同型であるため、同相写像を利用することにより、区間上の距離を用いて拡大実数系上の距離を定義できます。

SEQUENCE OF EXTENDED REAL VALUES

拡大実数列

拡大実数を項として持つ列について解説します。

拡大実数列の上極限と下極限

拡大実数列の上極限と下極限と呼ばれる概念を定義します。これらはともに拡大実数であり、上極限は下極限以上になることが保証されます。

TOPOLOGY OF EXTENDED REAL LINE

拡大実数系の位相

拡大実数系の位相について解説します。

拡大実数系における開集合・開集合系

拡大実数系の部分集合Aに属するそれぞれの点に対して、その点を中心とする近傍の中にAの部分集合であるようなものが存在する場合、Aを拡大実数系上の開集合と呼びます。

EXTENDED REAL VALUED FUNCTION

拡大実数値関数

拡大実数値関数について解説します。

拡大実数値関数の連続性

拡大実数系においては正の無限大と負の無限大が体系の中に含まれているため、拡大実数値関数の値が正の無限大や負の無限大であるような点においても、その関数が連続であるか検討できます。

拡大実数値関数の上半連続性・下半連続性

任意の上方位集合が閉集合であるような拡大実数値関数を上半連続関数と呼び、任意の下方位集合が閉集合であるような拡大実数値関数を下半連続関数と呼びます。上半連続かつ下半連続であることと連続であることは必要十分です。

RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

前提知識

本節の内容を理解する上で以下の知識が役に立ちます。

数列

実数を順番に並べたものを数列や実数列と呼びます。数列の項が先に進むにつれてある実数に限りなく近づく場合には、その数列は収束すると言い、その実数を数列の極限と呼びます。

1変数関数

関数に関するテキストと演習問題です。実数の点集合上に定義され実数を値としてとる関数について、収束の概念や連続性の概念を中心に解説します。

ADVANCED KNOWLEDGE

発展知識

本節で得た知識は以下の分野を学ぶ上での基礎になります。

1変数関数の微分

1変数関数の微分の概念を定義した上で、微分の基本性質や初等関数の微分、平均値の定理、高階の微分、テイラーの定理などについて学びます。これらの知識は後に1変数関数を目的関数とする最適化について学ぶ上での基盤になります。

1変数関数の積分

1変数関数のリーマン積分について学びます。具体的には、積分の概念を定義した上で、積分の基本性質や初等関数の積分、微分と積分の関係、関連する諸定理について学びます。

ワイズの理念とサービス

REGISTER

プレミアム会員登録

CONTACT

メールフォーム