数の体系
数の概念が自然数から整数、そして有理数へと拡張されてきた背景には、もとの数の範囲では不可能であった演算を可能にするという動機があります。また、数直線上に点を隙間なく並べるためには数の概念を有理数から実数へ拡張する必要があります。
数の概念が自然数から整数、そして有理数へと拡張されてきた背景には、もとの数の範囲では不可能であった演算を可能にするという動機があります。また、数直線上に点を隙間なく並べるためには数の概念を有理数から実数へ拡張する必要があります。
実数は有理数と無理数をあわせたもののことです。有理数は循環する無限小数であり無理数は循環しない無限小数ですから、実数とは循環するものとしないものを含めたすべての無限小数のことです。
実数を無限小数として定義する場合、実数に関する議論はすべて無限小数に関する議論として行うことになります。無限小数は扱いやすい概念ではないため、そのような議論は複雑になるため何かと不便です。そこで登場するのが公理主義という手法です。公理主義では実数を規定する基本的な性質を抽出し、それを命題として定式化した上で、これらの命題だけを議論の前提として演繹的に考えたときに、実数について何が言えるかを明らかにしようとします。
公理主義的実数論では実数空間上に加法と呼ばれる二項演算を定義した上で、それが可換群(アーベル群)としての性質を満たすことを公理として定めます。加法に関する性質はいずれもそれらの公理から導かれて初めて正しいものとして認められます。
公理主義的実数論では実数空間上に乗法と呼ばれる二項演算を定義した上で、それが可換群(アーベル群)としての性質を満たすことを公理として定めます。乗法に関する性質はいずれもそれらの公理から導かれて初めて正しいものとして認められます。
公理主義的実数論では実数空間上に加法および乗法と呼ばれる二項演算を定義した上で、それらが体としての性質を満たすことを公理として定めます。演算に関する性質はいずれもそれらの公理から導かれて初めて正しいものとして認められます。
実数の集合 R 上に定義された大小関係を用いて、狭義大小関係と呼ばれる新たな順序を間接的に定義します。狭義大小関係は非対称律、推移律、三分律を満たす狭義全順序です。
実数集合 R の空でない部分集合 A について、そのある要素 a が A の任意の実数以上ならば、a を A の最大値と呼びます。また、a が A の任意の実数以下ならば、a を A の最小値と呼びます。
実数集合 R の空でない部分集合 A について、ある実数 a が A の任意の要素以上ならば、a を A の上界と呼びます。また、a が A の任意の要素以下ならば、a をAの 下界 と呼びます。
実数空間 R の空でない部分集合 A が上に有界であるとともに、A の上界からなる集合 U(A) の最小値が存在するならば、それを A の上限と呼びます。また、A が下に有界であるとともに、A の下界からなる集合 L(A) の最大値が存在するならば、それを A の下限と呼びます。
公理主義的実数論では、実数空間が加法、乗法、大小関係に関して全順序体であることを公理として定めます。実数に関するあらゆる命題はそれらの公理から証明されてはじめて正しいものとして認められます。
実数を特徴づける公理として、それが加法と乗法、そして大小関係について全順序体であるものと定めました。しかし、こうした性質は有理数についても成立します。数としての実数を特徴づける性質は連続性です。連続性をデデキントの切断と呼ばれる概念を用いて解説します。
実数空間の非空かつ上に有界な部分集合は上限を持ちます。これを上限性質と呼びます。また、実数空間の非空かつ下に有界な部分集合は下限を持ちます。これを下限性質と呼びます。上限性質や下限性質はデデキントの公理と必要十分であるため、実数の連続性を特徴づける公理として採用することができます。
数学的帰納法とは、自然数 n に関する命題 P(n) が全ての自然数 n に対して成り立つことを示す手法の1つですが、この証明方法が有効であることの根拠(数学的帰納法の原理)を解説します。
数学的帰納法の原理は完全帰納法の原理(強数学的帰納法の原理)と呼ばれる命題と必要十分です。完全帰納法の原理を用いた証明方法を完全帰納法による証明と呼びます。
2つの異なる実数を任意に選んだとき、それらの間には必ず無理数が存在します。このような性質を無理数の稠密性と呼びます。また、すべての無理数からなる集合は非可算集合です。
以下の分野の知識があると本セクションの内容を円滑に理解できます。
実数を無限小数として定義する場合、実数に関する議論はすべて無限小数に関する議論として行うことになり面倒です。そこで代替的な方法として公理主義的なアプローチのもとで実数を定義します。ここでは実数を特徴づける公理について解説します。
本節で得た知識は以下の分野を学ぶ上での土台になります。
ユークリッド空間上の無限個の点を順番に並べたものを点列と呼びます。点列は実数列を一般化した概念です。ここでは点列が収束することの意味を定義した上で、収束点列の性質について解説します。