WIIS

LEBESGUE INTEGRAL

ルベーグ積分

OVERVIEW

ルベーグ積分

ルベーグ積分とは測度論を用いてより一般的な関数に対して積分を定義する手法です。ルベーグ積分を用いることにより、リーマン積分では積分できなかった様々な関数が積分可能になります。

TABLE OF CONTENTS

目次

LEBESGUE INTEGRAL OF SIMPLE FUNCTION

単関数のルベーグ積分

単関数を対象にルベーグ積分の概念を定義するとともに、その性質について解説します。

単関数の定数倍のルベーグ積分

有限な測度を持つルベーグ集合上に定義された単関数の定数倍として定義される単関数のルベーグ積分は、もとの単関数のルベーグ積分の定数倍と一致します。

単関数どうしの和のルベーグ積分

有限な測度を持つルベーグ集合上に定義された2つの単関数の和として定義される単関数のルベーグ積分は、もとの2つの単関数のルベーグ積分の和と一致します。

単関数どうしの差のルベーグ積分

有限な測度を持つルベーグ集合上に定義された2つの単関数の差として定義される単関数のルベーグ積分は、もとの2つの単関数のルベーグ積分の差と一致します。

単関数のルベーグ積分の単調性(単関数の絶対値のルベーグ積分)

有限な測度を持つルベーグ集合上に定義された2つの単関数がとり得る値の間に一方的な大小関係が成立する場合、両者のルベーグ積分の間にも同様の大小関係が成立します。また、単関数の絶対値のルベーグ積分は、もとの単関数のルベーグ積分の絶対値以上になります。

LEBESGUE INTEGRAL OF BOUNDED FUNCTION

有界関数のルベーグ積分

単関数のルベーグ積分を踏まえた上で、有限測度を持つ可測集合上に定義された有界関数のルベーグ積分を定義します。

有界関数のルベーグ積分とリーマン積分の関係

有界閉区間上に定義された有界関数がリーマン積分可能である場合にはルベーグ積分可能である一方で、ルベーグ積分可能な関数はリーマン積分可能であるとは限りません。したがって、ルベーグ積分はリーマン積分の拡張です。

有界関数の定数倍のルベーグ積分

有限測度を持つルベーグ可測集合上に定義された有界関数がルベーグ積分可能である場合、その定数倍として定義される関数もまたルベーグ積分可能です。

有界関数どうしの和のルベーグ積分

有限測度を持つルベーグ可測集合上に定義された2つの有界関数がルベーグ積分可能である場合、それらの和として定義される関数もまたルベーグ積分可能です。

有界関数どうしの差のルベーグ積分

有限測度を持つルベーグ可測集合上に定義された2つの有界関数がルベーグ積分可能である場合、それらの差として定義される関数もまたルベーグ積分可能です。

有界関数のルベーグ積分の加法性

有限測度を持つルベーグ可測集合上に有界なルベーグ可測関数が定義されている状況においてその集合を2つのルベーグ可測集合に分割した場合、個々の集合におけるルベーグ積分の和をとればもとの集合におけるルベーグ積分が得られます。

有界関数のルベーグ積分の単調性

有限測度を持つルベーグ可測集合上に定義された2つの有界関数の間に一方的な大小関係が成立する場合、両者のルベーグ積分の間にも同様の大小関係が成立します。また、有界関数の絶対値のルベーグ積分は、もとの関数のルベーグ積分の絶対値以上になります。

有界収束定理(有界なルベーグ可測関数列の極限のルベーグ積分)

有界なルベーグ可測関数列が一様収束する場合、その関数列のルベーグ積分からなる数列の極限は、一様極限のルベーグ積分と一致します。また、一様有界なルベーグ可測関数列が各点収束する場合、その関数列のルベーグ積分からなる数列の極限は、各点極限のルベーグ積分と一致します。

LEBESGUE INTEGRAL OF NONNEGATIVE LEGESGUE MEASURABLE FUNCTION

非負値をとるルベーグ可測関数のルベーグ積分

有限測度を持つとは限らないルベーグ可測集合上に定義されるとともに、有界であるとは限らない非負値をとる一般のルベーグ可測を対象に、そのルベーグ積分を定義します。

非負値をとるルベーグ可測関のルベーグ積分の加法性

ルベーグ可測集合上に定義された非負値をとるルベーグ可測関数が定義されている状況においてその集合を2つのルベーグ可測集合に分割した場合、個々の集合におけるルベーグ積分の和をとればもとの集合におけるルベーグ積分が得られます。

ファトゥの補題と単調収束定理

非負値をとるルベーグ可測関数列が各点収束する場合、各点極限のルベーグ積分は、関数列の要素である個々の関数のルベーグ積分からなる列の下極限以下になります(ファトゥの補題)。特に、関数列が増加列である場合、両者は一致します(単調収束定理)。

LEBESGUE INTEGRAL OF GENERAL LEGESGUE MEASURABLE FUNCTION

一般のルベーグ可測関数のルベーグ積分

一般のルベーグ可測関数を対象としたルベーグ積分を定義します。

ルベーグ可測関数の定数倍のルベーグ積分

ルベーグ可測関数がルベーグ積分可能である場合、その定数倍として定義されるルベーグ可測関数もまたルベーグ積分可能であるとともに、そのルベーグ積分はもとの関数のルベーグ積分の定数倍と一致します。

ルベーグ可測関数どうしの和のルベーグ積分

2つのルベーグ可測関数がルベーグ積分可能である場合、それらの和として定義されるルベーグ可測関数もまたルベーグ積分可能であるとともに、そのルベーグ積分はもとの2つの関数のルベーグ積分の和と一致します。

ルベーグ可測関数どうしの差のルベーグ積分

2つのルベーグ可測関数がルベーグ積分可能である場合、それらの差として定義されるルベーグ可測関数もまたルベーグ積分可能であるとともに、そのルベーグ積分はもとの2つの関数のルベーグ積分の差と一致します。

ルベーグ積分の単調性

ルベーグ積分可能な2つのルベーグ可測関数の間に一方的な大小関係が成立する場合、両者のルベーグ積分の間にも同様の大小関係が成立します。以上の性質を単調性と呼びます。

ルベーグ積分に関する比較判定法

ルベーグ可測関数に対して、その絶対値関数が定める値以上の値をとるルベーグ積分可能な関数が存在する場合、もとの関数もまたルベーグ積分可能であることが保証されます。

ルベーグの支配収束定理(優収束定理)

ルベーグ可測関数列が各点収束するとともに、その間数列を支配し、なおかつルベーグ積分可能であるような関数が存在する場合には、関数列の各点極限に相当する関数のルベーグ積分は、関数列の要素である個々の関数のルベーグ積分からなる数列の極限と一致します。

ルベーグ積分の加法性(有限加法性・可算加法性)

ルベーグ積分可能な関数の定義域を複数の互いに素なルベーグ可測集合に分割した場合、その個数が有限および可算のどちらの場合でも、個々の集合におけるルベーグ積分の和をとればもとの集合におけるルベーグ積分が得られます。

UNIFORM INTEGRABILITY

一様可積分性

ルベーグ可測関数系が一様可積分であることの意味を定義します。

一様可積分なルベーグ可測関数族

同一のルベーグ可測集合上に定義されたルベーグ可測族が一様可積分であることの意味を定義するとともに、ルベーグ積分可能性との関係を整理します。

ヴィタリの収束定理

有限測度を持つルベーグ可測集合上に定義されたルベーグ可測関数列が各点収束するとともに一様可積分である場合には、関数列の各点極限に相当する関数のルベーグ積分は、関数列の要素である個々の関数のルベーグ積分からなる数列の極限と一致します。

一般化されたヴィタリの収束定理

測度が有限であるとは限らない一般のルベーグ可測集合上に定義されたルベーグ可測関数列が各点収束するとともに一様可積分かつ一様緊密である場合には、関数列の各点極限に相当する関数のルベーグ積分は、関数列の要素である個々の関数のルベーグ積分からなる数列の極限と一致します。

RELATED KNOWLEDGE

関連知識

REQUIRED KNOWLEDGE

前提知識

本節を学ぶ上で以下の知識が役に立ちます。

ルベーグ測度

長さや面積、体積などはいずれも同一種類の小さい量を加え合わせることでより大きな量をつくることができるという意味において外延的な量です。一般に、外延量は測度と呼ばれる概念として一般化されます。ここでは実数空間(数直線)の部分集合を測定対象とするルベーグ測度について解説します。

ルベーグ可測関数

ルベーグ集合上に定義された関数によるボレル集合の逆像がルベーグ可測であることが保証される場合、そのような関数をルベーグ可測関数と呼びます。代表的な可測関数について、その性質を解説します。

ADVANCED KNOWLEDGE

発展知識

本節で得た知識は以下の分野を学ぶ上での基礎になります。

ディニ微分

微分を一般化したディニ微分と呼ばれる微分概念を導入するとともに、ルベーグ積分との関係について解説します。

ワイズの理念とサービス

REGISTER

プレミアム会員登録

CONTACT

メールフォーム