WIIS

ルベーグ積分

単関数の定数倍のルベーグ積分

目次

Twitter
Mailで保存

単関数の標準形の定数倍のルベーグ積分

ルベーグ可測空間\(\left( \mathbb{R} ,\mathfrak{M}_{\mu },\mu \right) \)に加えて、有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された単関数\begin{equation*}f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}が与えられているものとします。つまり、\(f\)はルベーグ可測関数であるとともに、その値域が有限集合\begin{eqnarray*}f\left( X\right) &=&\left\{ f\left( x\right) \in \mathbb{R} \ |\ x\in X\right\} \\
&=&\left\{ a_{1},a_{2},\cdots ,a_{n}\right\}
\end{eqnarray*}であるということです。

単関数\(f\)の値域に属するそれぞれの値\(a_{k}\in f\left(X\right) \)に対して、以下の集合\begin{eqnarray*}\left\{ f=a_{k}\right\} &=&\left\{ x\in X\ |\ f\left( x\right)
=a_{k}\right\} \\
&=&f^{-1}\left( \left\{ a_{k}\right\} \right)
\end{eqnarray*}を定義すれば、\(f\)の定義域であるルベーグ集合\(X\)は、\begin{equation*}X=\bigsqcup\limits_{k=1}^{n}\left\{ f=a_{k}\right\}
\end{equation*}という形の非交和で表現されます。単関数\(f\)の標準形とは、\begin{equation*}\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right) :\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}と定義される関数ですが、これはもとの単関数\(f\)と一致します。ただし、\(\chi _{\left\{ f=a_{k}\right\} }\)は集合\(\left\{ f=a_{k}\right\} \)に関する特性関数です。つまり、以下の関係\begin{equation*}f=\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right)
\end{equation*}が成り立つため、単関数\(f\)がそれぞれの\(x\in X\)に対して定める値は、\begin{eqnarray*}f\left( x\right) &=&\left( \sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{
f=a_{k}\right\} }\right) \right) \left( x\right) \\
&=&\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right)
\left( x\right) \\
&=&\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\left(
x\right) \right) \\
&=&a_{1}\cdot \chi _{\left\{ f=a_{1}\right\} }\left( x\right) +\cdots
+a_{n}\cdot \chi _{\left\{ f=a_{n}\right\} }\left( x\right)
\end{eqnarray*}となります。

有限測度を持つルベーグ可測集合\(X\)上に定義された単関数\(f\)は\(X\)上でルベーグ積分可能であり、そのルベーグ積分\begin{equation*}\int_{X}f=\sum_{k=1}^{n}\left[ a_{k}\cdot \mu \left( \left\{ f=a_{k}\right\}
\right) \right] \end{equation*}は有限な実数として定まります。

有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された単関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} \)の標準形が、\begin{equation*}f=\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right)
\end{equation*}である状況において、実数\(\lambda \in \mathbb{R} \)を任意に選んだ上で関数\begin{equation*}\lambda f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}を定義すると、これはそれぞれの\(x\in X\)に対して、\begin{eqnarray*}\left( \lambda f\right) \left( x\right) &=&\lambda f\left( x\right) \quad
\because \lambda f\text{の定義} \\
&=&\left( \lambda \sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{
f=a_{k}\right\} }\right) \right) \left( x\right) \quad \because f\text{の定義} \\
&=&\lambda \sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\}
}\right) \left( x\right) \\
&=&\lambda a_{1}\cdot \chi _{\left\{ f=a_{1}\right\} }\left( x\right)
+\cdots +\lambda a_{n}\cdot \chi _{\left\{ f=a_{n}\right\} }\left( x\right)
\end{eqnarray*}を定めます。

単関数の定数倍として定義される関数もまた単関数であるため\(\lambda f\)は単関数であり、したがって\(X\)上におけるルベーグ積分\begin{equation*}\int_{X}\lambda f
\end{equation*}をとることができますが、これと関数\(f\)の\(X\)上におけるルベーグ積分の間には以下の関係\begin{equation*}\int_{X}\lambda f=\lambda \int_{X}f
\end{equation*}が成り立つことが保証されます。つまり、単関数\(f\)のルベーグ積分の\(\lambda \)倍をとれば、それは単関\(\lambda f\)のルベーグ積分と一致することが保証されます。

命題(単関数の標準形の定数倍のルベーグ積分は単関数)
有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された単関数\begin{equation*}f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}の標準形が、\begin{equation*}
f=\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{\left\{ f=a_{k}\right\} }\right)
\end{equation*}であるものとする。実数\(\lambda \in \mathbb{R} \)を任意に選んだ上で関数\begin{equation*}\lambda f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}を定義すると、以下の関係\begin{equation*}
\int_{X}\lambda f=\lambda \int_{X}f
\end{equation*}が成り立つ。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

 

単関数の定数倍のルベーグ積分

単関数を表現する手段は標準形に限定されません。ルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された関数\begin{equation*}f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}が、以下の条件\begin{equation*}
X=\bigsqcup\limits_{k=1}^{n}A_{k}
\end{equation*}を満たすルベーグ集合\(A_{1},\cdots ,A_{n}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots ,a_{n}\in \mathbb{R} \)を用いて、\begin{equation*}f=\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{A_{k}}\right)
\end{equation*}という形で表されることは、\(f\)が単関数であるための必要十分条件です

有限測度を持つルベーグ可測集合\(X\)上に定義された単関数\(f\)の標準形が、\begin{equation*}f=\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{A_{k}}\right)
\end{equation*}である場合、\(X\)上におけるルベーグ積分は、\begin{equation*}\int_{X}f=\sum_{k=1}^{n}\left[ a_{k}\cdot \mu \left( A_{k}\right) \right] \end{equation*}と定まるとともに、これは有限な実数として定まります。

ルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} \)が、以下の条件\begin{equation*}X=\bigsqcup\limits_{k=1}^{n}A_{k}
\end{equation*}を満たすルベーグ集合\(A_{1},\cdots ,A_{n}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots ,a_{n}\in \mathbb{R} \)を用いて、\begin{equation*}f=\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{A_{k}}\right)
\end{equation*}と表される状況を想定します。つまり、\(f\)は単関数であるということです。実数\(\lambda \in \mathbb{R} \)を任意に選んだ上で関数\begin{equation*}\lambda f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}を定義すると、これはそれぞれの\(x\in X\)に対して、\begin{eqnarray*}\left( \lambda f\right) \left( x\right) &=&\lambda f\left( x\right) \quad
\because \lambda f\text{の定義} \\
&=&\left( \lambda \sum_{k=1}^{n}\left( a_{k}\cdot \chi _{A_{k}}\right)
\right) \left( x\right) \quad \because f\text{の定義} \\
&=&\lambda \sum_{k=1}^{n}\left( a_{k}\cdot \chi _{A_{k}}\right) \left(
x\right) \\
&=&\lambda a_{1}\cdot \chi _{A_{1}}\left( x\right) +\cdots +\lambda
a_{n}\cdot \chi _{A_{{}}}\left( x\right)
\end{eqnarray*}を定めます。

単関数の定数倍として定義される関数もまた単関数であるため\(\lambda f\)は単関数であり、したがって\(X\)上におけるルベーグ積分\begin{equation*}\int_{X}\lambda f
\end{equation*}をとることができますが、これと関数\(f\)の\(X\)上におけるルベーグ積分の間には以下の関係\begin{equation*}\int_{X}\lambda f=\lambda \int_{X}f
\end{equation*}が成り立つことが保証されます。つまり、単関数\(f\)のルベーグ積分の\(\lambda \)倍をとれば、それは単関数\(\lambda f\)のルベーグ積分と一致することが保証されます。

命題(単関数の定数倍のルベーグ積分)
有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された関数\begin{equation*}f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}が以下の条件\begin{equation*}
X=\bigsqcup\limits_{k=1}^{n}A_{k}
\end{equation*}を満たすルベーグ集合\(A_{1},\cdots ,A_{n}\in \mathfrak{M}_{\mu }\)と定数\(a_{1},\cdots ,a_{n}\in \mathbb{R} \)を用いて、\begin{equation*}f=\sum_{k=1}^{n}\left( a_{k}\cdot \chi _{A_{k}}\right)
\end{equation*}と表されるものとする。実数\(\lambda \in \mathbb{R} \)を任意に選んだ上で関数\begin{equation*}\lambda f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}を定義すると、以下の関係\begin{equation*}
\int_{X}\lambda f=\lambda \int_{X}f
\end{equation*}が成り立つ。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

結論をまとめます。

命題(単関数の定数倍のルベーグ積分)
有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された単関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} \)が与えられているものとする。実数\(\lambda \in \mathbb{R} \)を任意に選んだ上で関数\begin{equation*}\lambda f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}を定義すると、以下の関係\begin{equation*}
\int_{X}\lambda f=\lambda \int_{X}f
\end{equation*}が成り立つ。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(単関数の定数倍のルベーグ積分)
有限測度を持つルベーグ可測集合\(X\in \mathfrak{M}_{\mu }\)上に定義された単関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} \)が与えられているものとします。以下の関数\begin{equation*}-f:\mathbb{R} \supset X\rightarrow \mathbb{R} \end{equation*}を定義すると、これは単関数\(f\)の定数倍(\(-1\)倍)として定義される関数であるため、先の命題より、以下の関係\begin{equation*}\int_{X}-f=-\int_{X}f
\end{equation*}が成り立ちます。

 

演習問題

問題(特性関数のルベーグ積分)
関数\(f:\mathbb{R} \supset \left[ 0,1\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ 0,1\right] \)に対して、\begin{equation*}f\left( x\right) =\left\{
\begin{array}{cl}
-1 & \left( if\ x\in \mathbb{Q} \cap \left[ 0,1\right] \right) \\
0 & \left( if\ x\in \left[ 0,1\right] \backslash \mathbb{Q} \right)
\end{array}\right.
\end{equation*}を定めるものとします。\(f\)が単関数であることを確認した上で、以下の値\begin{equation*}\int_{X}f
\end{equation*}を求めてください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

Twitter
Mailで保存

質問とコメント

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

単関数どうしの和のルベーグ積分

有限な測度を持つルベーグ集合上に定義された2つの単関数の和として定義される単関数のルベーグ積分は、もとの2つの単関数のルベーグ積分の和と一致します。

単関数どうしの差のルベーグ積分

有限な測度を持つルベーグ集合上に定義された2つの単関数の差として定義される単関数のルベーグ積分は、もとの2つの単関数のルベーグ積分の差と一致します。

多変数関数の定数倍の偏微分

偏微分可能な関数の定数倍として定義される関数もまた偏微分可能であり、その関数の勾配ベクトルはもとの関数の勾配ベクトルの定数倍と一致します。

単関数のルベーグ積分の単調性(単関数の絶対値のルベーグ積分)

有限な測度を持つルベーグ集合上に定義された2つの単関数がとり得る値の間に一方的な大小関係が成立する場合、両者のルベーグ積分の間にも同様の大小関係が成立します。また、単関数の絶対値のルベーグ積分は、もとの単関数のルベーグ積分の絶対値以上になります。

有界関数のルベーグ積分とリーマン積分の関係

有界閉区間上に定義された有界関数がリーマン積分可能である場合にはルベーグ積分可能である一方で、ルベーグ積分可能な関数はリーマン積分可能であるとは限りません。したがって、ルベーグ積分はリーマン積分の拡張です。

多変数関数の定数倍の上積分・下積分・定積分

n次元空間上に存在する有界かつ閉な直方体領域上に定義された多変数関数が多重リーマン積分可能である場合、その関数の定数倍として定義される多変数関数もまた多重リーマン積分可能です。

可測関数の定数倍は可測関数

ルベーグ可測関数の定数倍として定義される関数はルベーグ可測関数です。また、ボレル可測関数の定数倍として定義される関数はボレル可測関数です。

有界関数の定数倍のルベーグ積分

有限測度を持つルベーグ可測集合上に定義された有界関数がルベーグ積分可能である場合、その定数倍として定義される関数もまたルベーグ積分可能です。

有界関数どうしの和のルベーグ積分

有限測度を持つルベーグ可測集合上に定義された2つの有界関数がルベーグ積分可能である場合、それらの和として定義される関数もまたルベーグ積分可能です。

有界関数どうしの差のルベーグ積分

有限測度を持つルベーグ可測集合上に定義された2つの有界関数がルベーグ積分可能である場合、それらの差として定義される関数もまたルベーグ積分可能です。

有界関数のルベーグ積分の加法性

有限測度を持つルベーグ可測集合上に有界なルベーグ可測関数が定義されている状況においてその集合を2つのルベーグ可測集合に分割した場合、個々の集合におけるルベーグ積分の和をとればもとの集合におけるルベーグ積分が得られます。

有界関数のルベーグ積分の単調性

有限測度を持つルベーグ可測集合上に定義された2つの有界関数の間に一方的な大小関係が成立する場合、両者のルベーグ積分の間にも同様の大小関係が成立します。また、有界関数の絶対値のルベーグ積分は、もとの関数のルベーグ積分の絶対値以上になります。

有界収束定理(有界なルベーグ可測関数列の極限のルベーグ積分)

有界なルベーグ可測関数列が一様収束する場合、その関数列のルベーグ積分からなる数列の極限は、一様極限のルベーグ積分と一致します。また、一様有界なルベーグ可測関数列が各点収束する場合、その関数列のルベーグ積分からなる数列の極限は、各点極限のルベーグ積分と一致します。