数列の定義と具体例
実数を順番に並べたものを数列や実数列と呼びます。数列はすべての自然数からなる集合を定義域とし、すべての実数からなる集合を終集合とする写像として定式化することもできます。
数列と呼ばれる概念を定義した上で、数列が収束することの意味を定義します。
実数を順番に並べたものを数列や実数列と呼びます。数列はすべての自然数からなる集合を定義域とし、すべての実数からなる集合を終集合とする写像として定式化することもできます。
数列の項が先に進むにつれてある実数に限りなく近づく場合には、その数列は収束すると言い、その実数を数列の極限と呼びます。ただし、「限りなく近づく」という表現は曖昧であるため、イプシロン・エヌ論法を用いて収束列の概念を厳密に定義します。
数列の項が先に進むにつれて限りなく大きくなる場合には、その数列は正の無限大に発散すると言います。また、数列の項が先に進むにつれて限りなく小さくなる場合には、その数列は負の無限大に発散すると言います。正ないし負の無限大に発散する数列は収束しません。収束列ではなく、なおかつ正ないし負の無限大に発散しない数列を振動列と呼びます。
数列のすべての項からなる集合が上に有界ならば、その数列は上に有界であると言います。また、数列のすべての項からなる集合が下に有界ならば、その数列は下に有界であると言います。上に有界かつ下に有界な数列を有界な数列と呼びます。収束列は有界ですが、有界な数列は収束するとは限りません。
すべての項が等しい数列を定数数列(定数列)と呼びます。定数列は有限な実数へ収束します。
数列が収束するとき、その数列の一般項の定数倍を一般項とする数列もまた収束します。また、正の無限大や負の無限大に発散する数列と、その数列の定数倍の極限の間にも同様の関係が成り立ちます。
2つの数列が収束するとき、それらの一般項の和を一般項とする数列もまた収束します。また、ともに正の無限大に発散する2つの数列や、ともに負の無限大に発散する2つの数列の間にも同様の関係が成り立ちます。
2つの数列が収束するとき、それらの一般項の差を一般項とする数列もまた収束します。また、正の無限大に発散する数列と負の無限大に発散する数列の間にも同様の関係が成り立ちます。
2つの数列が収束するとき、それらの一般項の積を一般項とする数列もまた収束します。また、正の無限大や負の無限大に発散する数列の間にも同様の関係が成り立ちます。
2つの数列が収束するとき、それらの一般項の商を一般項とする数列もまた収束します。また、2つの数列のどちらか一方が正の無限大や負の無限大に発散し、他方が収束する場合にも、それらの商の間に同様の関係が成り立ちます。
非負の実数を項とする数列が収束するとき、その一般項の平方根を一般項とする数列も収束します。また、非負の実数を項とする数列が正の無限大へ発散するとき、その一般項の平方根を一般項とする数列も正の無限大へ発散します。
数列が収束するとき、その一般項の絶対値を一般項とする数列も収束します。以上の事実を利用することにより、数列が有限な実数へ収束すること・しないことを判定できます。
ベルヌーイの不等式を活用することで、累乗の形をしている数列の収束・発散を判定するための条件を特定します。
複数の収束列の項の間に大小関係に関する一定の関係が成り立つ場合には、それらの収束列の極限の間にも同様の関係が成り立ちます。また、はさみうちの定理や絶対値定理などについても解説します。
数列のすべての項が正の実数である場合、隣り合う2つの項の比を項として持つ新たな数列を定義し、その数列の極限を観察することにより、もとの数列の収束・発散を判定できます。
数列の極限が不定形である場合、その数列の一般項を上手く変形してから極限をとることにより不定形を解消できることがあります。今回は不定形を解消するための方法を解説します。
単調数列と呼ばれるクラスの数列について解説します。
数列の項が先に行くにつれて大きくなることはあっても小さくなることがない場合、その数列を単調増加数列と呼びます。逆に、項が先に行くにつれて小さくなることはあっても大きくなることがない場合、その数列を単調減少数列と呼びます。
実数の連続性を特徴づける上限性質や下限性質を公理として認めると、そこから上に有界な単調増加数列や下に有界な単調減少数列が収束することを示すことができます。
上に有界な単調増加数列の収束定理や下に有界な単調減少数列の収束定理などはいずれも実数の連続性の公理と必要十分であることを示します。
区間を順番に並べたものを区間列と呼びます。
実数の区間を順番に並べたものを区間列と呼びます。また、区間列に属する区間を任意に選んだとき、それが直前の区間を部分集合として含んでいる場合にはその区間列を増加列と呼びます。一方、区間列に属する区間を任意に選んだとき、それが直前の区間の部分集合であるならばその区間列を減少列と呼びます。
実数の連続性を公理として認めるとき、そこから区間列に関するカントールの縮小区間定理という命題を示すことができます。これは、有界閉区間からなる単調減少列について、その区間の長さが 0 に収束する場合には、その区間列に属するすべての区間に属する実数は1つだけであるという主張です。
実数空間が全順序体としての公理を満たすことを認める場合、実数の連続性の公理と、カントールの縮小区間定理およびアルキメデスの性質が成り立つことは必要十分になります。
部分列と呼ばれるクラスの数列について解説します。
数列から無限個の項を抜き出して順番を保ったまま並べてできる数列をもとの数列の部分列と呼びます。
数列が収束することと、その任意の部分列がもとの数列の極限と同じ極限へ収束することは必要十分です。以上の事実は、収束する数列の極限を特定したり、数列が発散することを示す上で有用です。
収束する数列の任意の部分列は収束する一方、収束しない数列に関しては、収束する部分列を持つ場合とそうでない場合の両方が起こり得ます。一方、数列が有界である場合には、それ自身が収束するかどうかを問わず、収束する部分列が必ず存在します。これをボルツァーノ=ワイエルシュトラスの定理と呼びます。
ボルツァーノ=ワイエルシュトラスの定理はカントールの縮小区間定理と必要十分です。したがって、ボルツァーノ=ワイエルシュトラスの定理とアルキメデスの性質が成り立つことは実数の連続性と必要十分です。
コーシー列と呼ばれるクラスの数列について解説します。
項が先に進むにつれて項の変化がどこまでも小さくなっていく数列をコーシー列と呼びます。コーシー列の概念を厳密に定義した上で、コーシー列と収束列の関係を議論します。また、数列がコーシー列であるための判定条件について解説します。
コーシー列は有界である一方、有界な数列はコーシー列であるとは限りません。したがって、有界ではない数列はコーシー列ではありません。
実数の連続性を認める場合、数列が有限な実数へ収束することと、その数列がコーシー列であることは必要十分になります。
コーシー列の収束定理とアルキメデスの性質がともに成り立つことは、実数の連続性の公理と必要十分であることを示します。
数列の上極限と下極限について解説します。
数列の上極限と下極限を定義します。数列が有界である場合、その上極限と下極限がそれぞれ有限な実数として定まることが保証されます。
数列の上極限と下極限が有限な実数として定まるとともに両者が一致することは、その数列が有限な実数へ収束するための必要十分条件です。しかもその場合、極限は上極限や下極限と一致します。
数列の上極限および下極限と、その数列の定数倍として定義される数列の上極限および下極限の間に成立する関係について解説します。
代表的な数列について解説します。
隣り合う項が共通の差を持つ数列を等差数列と呼びます。等差数列を定義するとともに、その部分和を明らかにした上で、等差数列が収束する・発散するための条件を明らかにします。
隣り合う項が共通の比を持つ数列を等比数列と呼びます。等比数列を定義するとともに、その部分和を明らかにした上で、等比数列が収束する・発散する・振動するための条件を明らかにします。
各項の逆数をとると等差数列になるような数列を調和数列と呼びます。調和数列の部分和の近似値を特定するとともに、調和数列が収束することを示します。
ネイピア数(オイラー数、自然対数の定)を数列の極限として定義するとともに、それが複利で元本を運用する場合の元本の増加率の極限として解釈可能であることを示します。
数列に関する確認テストです。
数列の確認テストです。難易度は学部の中間試験程度です。
数列の確認テストです。難易度は学部の中間試験程度です。
数列の確認テストです。難易度は学部の中間試験程度です。
本節で得た知識は以下の分野を学ぶ上での基礎になります。
実数空間すなわち数直線の位相に関するテキストと演習問題です。実数空間上の開集合や閉集合など、位相を規定する概念について解説します。
関数に関するテキストと演習問題です。実数の点集合上に定義され実数を値としてとる関数について、収束の概念や連続性の概念を中心に解説します。
ユークリッド空間上の無限個の点を順番に並べたものを点列と呼びます。点列は実数列を一般化した概念です。ここでは点列が収束することの意味を定義した上で、収束点列の性質について解説します。