教材一覧
SEQUENCE OF NUMBERS

コーシー列と実数の連続性

< 前のページ
次のページ >
Share on twitter
Twitterで共有
Share on email
メールで共有

復習:実数の連続性

復習になりますが、実数の公理系は\(\mathbb{R} \)が全順序体であることを規定する公理と\(\mathbb{R} \)の連続性を規定する公理に分類されます。特に、実数の連続性を特徴づける公理としてデデキントの公理を採用しました。

公理(連続性の公理)
\(\mathbb{R} \)の切断\(\left\langle A,B\right\rangle \)を任意に選んだとき、\begin{eqnarray*}&&\left( a\right) \ \max A\text{は存在するが}\min B\text{は存在しない} \\
&&\left( b\right) \ \max A\text{は存在しないが}\min B\text{は存在する}
\end{eqnarray*}のどちらか一方が成り立つことを公理として定める。

\(\mathbb{R} \)の全順序体としての公理を認めるとき、デデキントの公理は以下のような様々な形で言い換え可能であることを示しました。

命題(連続性の公理)
\(\mathbb{R} \)が全順序体としての公理を満たすものとする。このとき、以下の6つの命題はお互いに必要十分である。\begin{eqnarray*}&&\left( a\right) \ \text{デデキントの公理} \\
&&\left( b\right) \ \text{上限性質} \\
&&\left( c\right) \ \text{下限性質} \\
&&\left( d\right) \ \text{上に有界な単調増加数列の収束定理} \\
&&\left( e\right) \ \text{下に有界な単調減少数列の収束定理} \\
&&\left( f\right) \ \text{カントールの縮小区間定理+アルキメデスの性質} \\
&&\left( g\right) \ \text{ボルツァーノ=ワイエルシュトラスの定理+アルキメデスの性質}
\end{eqnarray*}

つまり、\(\mathbb{R} \)の連続性を規定する公理として以上の7つの命題の中のどれを採用しても問題ないこということです。以下では、コーシー列を用いて実数の連続性を表現することもできることを解説します。

 

コーシー列の収束定理と実数の連続性

ボルツァーノ=ワイエルシュトラスの定理からコーシー列の収束定理を導きましたが、実は、それとは逆に、コーシー列の収束定理からボルツァーノ=ワイエルシュトラスの定理を導くことができます。したがって、コーシー列の収束定理とアルキメデスの性質がともに成り立つことが実数の連続性と必要十分であるということになります。

命題(カントールの縮小区間定理の言い換え)
\(\mathbb{R} \)が全順序体としての公理を満たすものとする。このとき、ボルツァーノ=ワイエルシュトラスの定理とコーシー列の収束定理は必要十分である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

以上の命題より、実数の連続性は以下の様な様々な形で表現可能であることが明らかになりました。

命題(連続性の公理)
\(\mathbb{R} \)が全順序体としての公理を満たすものとする。このとき、以下の8つの命題はお互いに必要十分である。\begin{eqnarray*}&&\left( a\right) \ \text{デデキントの公理} \\
&&\left( b\right) \ \text{上限性質} \\
&&\left( c\right) \ \text{下限性質} \\
&&\left( d\right) \ \text{上に有界な単調増加数列の収束定理} \\
&&\left( e\right) \ \text{下に有界な単調減少数列の収束定理} \\
&&\left( f\right) \ \text{カントールの縮小区間定理+アルキメデスの性質} \\
&&\left( g\right) \ \text{ボルツァーノ=ワイエルシュトラスの定理+アルキメデスの性質} \\
&&\left( h\right) \ \text{コーシー列の収束定理+アルキメデスの性質}
\end{eqnarray*}

つまり、\(\mathbb{R} \)の連続性を規定する公理として上の8つの命題の中のどれを採用しても問題ないということです。

 

有理数の非連続性

コーシー列の収束定理とアルキメデスの性質によって\(\mathbb{R} \)の連続性が表現できるのであれば、連続性を満たさない\(\mathbb{Q} \)はコーシー列の収束定理とアルキメデスの性質の少なくとも一方を満たさないはずです。\(\mathbb{Q} \)がコーシー列の収束定理を定理を満たさないとは、有理数を項とするコーシー列が有理数へ収束するとは限らないことを意味します。以下で確認しましょう。

例(有理数の非連続性)
無理数\(\sqrt{2}\)は以下の非循環小数\begin{equation*}\sqrt{2}=1.41421356\cdots
\end{equation*}として表現されます。そこで、数列\(\left\{x_{n}\right\} \)を、\begin{eqnarray*}x_{1} &=&1 \\
x_{2} &=&1.4 \\
x_{3} &=&1.41 \\
x_{4} &=&1.4142 \\
&&\vdots
\end{eqnarray*}などと定義します。この数列\(\left\{ x_{n}\right\} \)はコーシー列ですが、その一方で、この数列の極限は\(\sqrt{2}\)であり、これは有理数ではありません。したがって、\(\mathbb{Q} \)上においてコーシー列は収束するとは限らないことが明らかになりました。

 

演習問題

問題(有理数の不連続性)
\(\mathbb{Q} \)上の数列\(\left\{ x_{n}\right\} \)を、\begin{eqnarray*}x_{1} &=&1 \\
x_{2} &=&1.4 \\
x_{3} &=&1.41 \\
x_{4} &=&1.4142 \\
&&\vdots
\end{eqnarray*}と定義します。この数列はコーシー列である一方で有理数へ収束しないことを証明してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

次回から数直線の位相について解説します。

< 前のページ
次のページ >
Share on twitter
Twitterで共有
Share on email
メールで共有
RELATED KNOWLEDGE

関連知識

コーシー列

数列の極限

数列の項が先に進むにつれてある実数に限りなく近づく場合には、その数列は収束すると言い、その実数を数列の極限と呼びます。ただし、「限りなく近づく」という表現は曖昧ですので、イプシロン・デルタ論法を用いて収束列の概念を厳密に定義します。

単調数列

有界単調数列と実数の連続性

上に有界な単調増加数列の収束定理や下に有界な単調減少数列の収束定理などはいずれも実数の連続性の公理と必要十分であることを示します。

実数の連続性

集積点の存在条件と実数の連続性

集積点の存在条件(有界な無限集合は集積点を持つという命題)はボルツァーノ=ワイエルシュトラスの定理と必要十分です。したがって、集積点の存在条件とアルキメデスの性質によって、実数の連続性の定義とすることができます。

カントールの縮小区間定理

区間列と実数の連続性

実数空間が全順序体としての公理を満たすことを認める場合、実数の連続性の公理と、カントールの縮小区間定理およびアルキメデスの性質が成り立つことは必要十分になります。

ボルツァーノ=ワイエルシュトラスの定理

部分列と実数の連続性

ボルツァーノ=ワイエルシュトラスの定理はカントールの縮小区間定理と必要十分です。したがって、ボルツァーノ=ワイエルシュトラスの定理とアルキメデスの性質が成り立つことは実数の連続性と必要十分です。

コーシー列

コーシー列

項が先に進むにつれて項の変化がどこまでも小さくなっていく数列をコーシー列と呼びます。コーシー列の概念を厳密に定義した上で、コーシー列と収束列の関係を議論します。また、数列がコーシー列であるための判定条件について解説します。

コーシー列

コーシー列の収束定理

数列が有限な実数へ収束することと、その数列がコーシー列であることが必要十分であることを示します。

実数の連続性

実数の連続性

実数を特徴づける公理として、それが加法と乗法、そして大小関係について全順序体であるものと定めました。しかし、こうした性質は有理数についても成立します。数としての実数を特徴づける性質は連続性です。連続性をデデキントの切断と呼ばれる概念を用いて解説します。

上限・下限

上限性質・下限性質

実数空間の非空かつ上に有界な部分集合は上限を持ちます。これを上限性質と呼びます。また、実数空間の非空かつ下に有界な部分集合は下限を持ちます。これを下限性質と呼びます。上限性質や下限性質はデデキントの公理と必要十分であるため、実数の連続性を特徴づける公理として採用することができます。

アルキメデスの性質

アルキメデスの性質

実数の連続性より、すべての自然数からなる集合 N は上に有界ではないことが示されます。これをアルキメデスの原理と呼びます。

コーシー列

コーシー列

ユークリッド空間においても、実数空間と同様に、コーシー列(基本列)と呼ばれる点列を定義することができます。コーシー列は有界な点列です。

DISCUSSION

質問とコメント

プレミアム会員専用コンテンツです
ログイン】【会員登録

数列