教材一覧
教材一覧
教材検索

数列

部分列を用いた数列の収束判定

目次

Twitter
Mailで保存

部分列を用いた数列の収束可能性の特徴づけ

数列が有限な実数へ収束する場合、その任意の部分列もまたもとの数列の極限と同じ極限へ収束することが保証されます。

命題(収束数列の任意の部分列は収束する)
数列\(\left\{ x_{n}\right\} \)が有限な実数\(a\in \mathbb{R} \)へ収束するならば、\(\left\{ x_{n}\right\} \)の任意の部分列もまた\(a\)へ収束する。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

上の命題の逆もまた成立します。つまり、数列の任意の部分列が収束するとともにそれらの極限がすべて一致する場合には、もとの数列もまた部分列の極限と同じ極限へ収束します。

命題(任意の部分列が同一の極限へ収束する数列は収束する)
数列\(\left\{ x_{n}\right\} \)の任意の部分列が同一の有限な実数\(a\in \mathbb{R} \)へ収束するならば、\(\left\{ x_{n}\right\} \)もまた\(a\)へ収束する。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

以上の2つの命題より、数列の収束可能性を部分列を用いて以下のように表現できることが明らかになりました。

命題(部分列を用いた数列の収束可能性の特徴づけ)
数列\(\left\{ x_{n}\right\} \)が有限な実数\(a\in \mathbb{R} \)へ収束することと、\(\left\{ x_{n}\right\} \)の任意の部分列が同一の有限な実数へ収束するとともにその極限が\(a\)であることは必要十分である。

 

部分列を用いた収束数列の極限の特定

数列\(\left\{ x_{n}\right\} \)が有限な実数へ収束することは分かっているものの、その極限が明らかになっていない状況を想定します。この場合、上の命題より、この数列\(\left\{ x_{n}\right\} \)の任意の部分列は\(\left\{x_{n}\right\} \)と同一の極限に収束することが保証されているため、数列\(\left\{ x_{n}\right\} \)の極限を求めるかわりに、何らかの部分列の極限を求めてもよいことになります。

この手法はもとの数列\(\left\{ x_{n}\right\} \)が収束することが分かっている状況においてのみ利用可能であることに注意してください。なぜなら、もとの数列\(\left\{ x_{n}\right\} \)が収束しない場合でもその部分列が収束する事態は起こり得るからです。以下の例より明らかです。

例(収束しない数列の収束部分列)
数列\(\left\{ x_{n}\right\} \)の一般項が、\begin{equation*}x_{n}=\left( -1\right) ^{n}
\end{equation*}で与えられるものとします。この数列は振動するため収束しません。この数列の偶数番目の項からなる部分列\(\left\{ x_{l\left( n\right) }\right\}=\left\{ x_{2n}\right\} \)に注目すると、その一般項は、\begin{eqnarray*}x_{l\left( n\right) } &=&x_{2n} \\
&=&\left( -1\right) ^{2n} \\
&=&1
\end{eqnarray*}であるため、\begin{eqnarray*}
\lim_{n\rightarrow \infty }x_{l\left( n\right) } &=&\lim_{n\rightarrow
\infty }1 \\
&=&1
\end{eqnarray*}となります。

 

数列が収束しないことの証明

数列\(\left\{ x_{n}\right\} \)の部分列の中に収束しないものが存在する場合、もとの数列\(\left\{ x_{n}\right\} \)もまた収束しません。なぜなら、先の命題より、そのような部分列が存在することは\(\left\{ x_{n}\right\} \)が収束することと矛盾するからです。

例(数列が収束しないことの証明)
数列\(\left\{ x_{n}\right\} \)の一般項が、\begin{equation*}x_{n}=\left( -1\right) ^{n}+n
\end{equation*}で与えられるものとします。この数列の偶数番目の項からなる部分列\(\left\{ x_{l\left( n\right) }\right\}=\left\{ x_{2n}\right\} \)に注目すると、その一般項は、\begin{eqnarray*}x_{l\left( n\right) } &=&x_{2n} \\
&=&\left( -1\right) ^{2n}+n \\
&=&1+n
\end{eqnarray*}であるため、\begin{eqnarray*}
\lim_{n\rightarrow \infty }x_{l\left( n\right) } &=&\lim_{n\rightarrow
\infty }\left( 1+n\right) \\
&=&+\infty
\end{eqnarray*}となります。したがって、先の命題より、もとの数列\(\left\{ x_{n}\right\} \)は収束しません。

数列\(\left\{ x_{n}\right\} \)の任意の部分列が収束するものの、その中に極限が異なるものが存在する場合、もとの数列\(\left\{ x_{n}\right\} \)もまた収束しません。なぜなら、先の命題より、そのような部分列が存在することは\(\left\{ x_{n}\right\} \)が収束することと矛盾するからです。

例(数列が収束しないことの証明)
数列\(\left\{ x_{n}\right\} \)の一般項が、\begin{equation*}x_{n}=\left( -1\right) ^{n}+\frac{1}{n}
\end{equation*}で与えられているものとします。この数列の偶数番目の項からなる部分列\(\left\{ x_{l\left( n\right)}\right\} =\left\{ x_{2n}\right\} \)に注目すると、その一般項は、\begin{eqnarray*}x_{l\left( n\right) } &=&x_{2n} \\
&=&\left( -1\right) ^{2n}+\frac{1}{2n} \\
&=&1+\frac{1}{2n}
\end{eqnarray*}であるため、\begin{eqnarray*}
\lim_{n\rightarrow \infty }x_{l\left( n\right) } &=&\lim_{n\rightarrow
\infty }\left( 1+\frac{1}{2n}\right) \\
&=&1
\end{eqnarray*}となります。一方、偶数番目の項からなる部分列\(\left\{ x_{k\left( n\right) }\right\}=\left\{ x_{2n-1}\right\} \)に注目すると、その一般項は、\begin{eqnarray*}x_{k\left( n\right) } &=&x_{2n-1} \\
&=&\left( -1\right) ^{2n-1}+\frac{1}{2n-1} \\
&=&-1+\frac{1}{2n-1}
\end{eqnarray*}であるため、\begin{eqnarray*}
\lim_{n\rightarrow \infty }x_{k\left( n\right) } &=&\lim_{n\rightarrow
\infty }\left( -1+\frac{1}{2n-1}\right) \\
&=&-1
\end{eqnarray*}となります。つまり、これらの部分列の極限は異なるため、先の命題より、もとの数列\(\left\{ x_{n}\right\} \)は収束しません。

 

演習問題

問題(部分列を用いた数列の収束判定)
数列\(\left\{ x_{n}\right\} \)の一般項が、\begin{equation*}x_{n}=\frac{2\left( -1\right) ^{n}}{n}
\end{equation*}で与えられているものとします。この数列は収束するという前提のもと、その極限を求めてください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(部分列を用いた数列の収束判定)
数列\(\left\{ x_{n}\right\} \)の一般項が、\begin{equation*}x_{n}=\frac{n\left( -1\right) ^{n}}{n}
\end{equation*}で与えられているものとします。この数列は収束するでしょうか。検討してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

Twitter
Mailで保存

質問とコメント

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

距離空間上の点列の部分列

距離空間上の点列から無限個の項を抜き出して順番を保ったまま並べることで得られる新たな点列を部分列と呼びます。部分列を合成写像として定義するとともに、部分列の一般項を特定する方法を解説します。

部分列を用いた距離空間上の点列の収束判定

距離空間上の点列が収束することと、その任意の部分列がもとの点列の極限と同じ極限へ収束することは必要十分です。以上の事実は、収束する点列の極限を特定したり、点列が収束しないことを示す上で有用です。

数列の部分列

数列から無限個の項を抜き出して順番を保ったまま並べてできる数列をもとの数列の部分列と呼び