教材一覧
教材一覧
教材検索
STATIC GAME OF INCOMPLETE INFORMATION

ベイジアンゲームのハーサニ変換とベイズ同値仮説

目次

Share on twitter
Twitterで共有
Share on email
メールで共有

ハーサニ変換

ベイジアンゲーム\(G\)において共通事前分布を仮定する場合、それぞれのプレイヤー\(i\)の信念\(f_{i}=\left\{ f_{i}\left( \cdot |\theta _{i}\right)\right\} _{\theta _{i}\in \Theta _{i}}\)は、プレイヤーたちにとって共有知識である共通事前分布\(f^{\ast }:\Theta _{I}\rightarrow \left[ 0,1\right] \)と整合的です。つまり、プレイヤー\(i\in I\)とそのタイプ\(\theta _{i}\in \Theta _{i}\)および他のプレイヤーたちのタイプ\(\theta _{-i}\in\Theta _{-i}\)をそれぞれ任意に選んだときに、\(f_{i}\)と\(f^{\ast }\)の間には、\begin{equation*}f_{i}\left( \theta _{-i}|\theta _{i}\right) =\frac{f^{\ast }\left( \theta
_{i},\theta _{-i}\right) }{\sum\limits_{\theta _{-i}\in \Theta _{-i}}f^{\ast
}\left( \theta _{i},\theta _{-i}\right) }
\end{equation*}という関係が成り立つということです。この意味において、共通事前分布の仮定はすべてのプレイヤーが同一の主観的予想を持っていることを要求します。

また、ベイジアンゲーム\(G\)の定義より、プレイヤーたちのタイプ集合\(\Theta _{1},\cdots ,\Theta _{n}\)もまた共有知識です。したがって、それぞれのプレイヤー\(i\)は共通事前分布\(f^{\ast }\)から自身の信念\(f_{i}=\left\{ f_{i}\left( \cdot |\theta _{i}\right)\right\} _{\theta _{i}\in \Theta _{i}}\)を導出できるだけでなく、他の任意のプレイヤー\(j\ \left( \not=i\right) \)の信念\(f_{j}=\left\{ f_{j}\left(\cdot |\theta _{j}\right) \right\} _{\theta _{j}\in \Theta _{j}}\)を導出することもできます。つまり、共通事前分布の仮定のもとでは、プレイヤーたちの信念からなる組\(\left\{ f_{i}\right\} _{i\in I}\)もまた共有知識になります。共通事前分布を導入することによりプレイヤーたちの信念が私的情報から共有知識へ変化します。

では、共通事前分布の仮定を認める場合、不完備情報ゲームにおける情報の非対称性、すなわち、それぞれのプレイヤーにとって自身の真のタイプが私的情報であるという状況をどのように表現すればよいでしょうか。共通事前分布\(f^{\ast }\)を仮定する場合には、ベイジアンゲームを\(G\)を以下の手順を通じて不完全な動学ゲームへ変換することにより、一般性を失わないまま、プレイヤーにとって自身の真のタイプが私的情報である状況を表現できます。このような変換をハーサニ変換(Harsanyi transformation)と呼びます。

  1. 自然(nature)と呼ばれるプレイヤーが、状態集合\(\Theta _{I}\)上の同時確率関数である共通事前分布\begin{equation*}f^{\ast }:\Theta _{I}\rightarrow \left[ 0,1\right]\end{equation*}を定める。\(\Theta _{I}\)および\(f^{\ast }\)は共有知識である。
  2. 自然はそれぞれのプレイヤー\(i\)に対して、その人の真のタイプ\(\theta _{i}\in \Theta _{i}\)を明かすが、他のプレイヤーには明かさない。つまり、プレイヤー\(i\)の真のタイプ\(\theta _{i}\)は彼の私的情報になる。
  3. それぞれのプレイヤー\(i\)は自身の行動集合\(A_{i}\)の中から特定の行動\(a_{i}\)を選択する。その際、他のプレイヤーたちが選択する行動を事前に観察できない。
  4. プレイヤーたちが選択した行動\(a_{I}\in A_{I}\)に対してゲームのルールが結果を定める。
  5. 真の状態\(\theta _{I}\)とプレイヤーたちが選択した行動の組\(a_{I}\)に応じて、それぞれのプレイヤー\(i\)は利得関数\(u_{i}\left( \cdot ,\theta _{I}\right) \)のもとで先の結果を評価し、利得\(u_{i}\left( a_{I},\theta _{I}\right) \)を獲得する。

繰り返しになりますが、自然が定める共通事前分布\(f^{\ast }\)は、それぞれの状態\(\theta _{I}\in \Theta _{I}\)が起こる確率\(f^{\ast }\left( \theta_{I}\right) \)を特定する同時確率関数であり、これは、ハーサニ変換前のベイジアンゲーム\(G\)におけるプレイヤーたちの信念\(\left\{ f_{i}\right\} _{i\in I}\)と整合的でなければなりません。具体的には、プレイヤー\(i\in I\)とそのタイプ\(\theta _{i}\in \Theta _{i}\)および他のプレイヤーたちのタイプ\(\theta _{-i}\in\Theta _{-i}\)をそれぞれ任意に選んだときに、タイプ集合が離散的である場合には、\begin{equation*}f_{i}\left( \theta _{-i}|\theta _{i}\right) =\frac{f^{\ast }\left( \theta
_{i},\theta _{-i}\right) }{\sum\limits_{\theta _{-i}\in \Theta _{-i}}f^{\ast
}\left( \theta _{i},\theta _{-i}\right) }
\end{equation*}が成り立ち、タイプ集合が連続的である場合には、\begin{equation*}
f_{i}\left( \theta _{-i}|\theta _{i}\right) =\frac{f^{\ast }\left( \theta
_{i},\theta _{-i}\right) }{\int\limits_{\theta _{-i}\in \Theta _{-i}}f^{\ast
}\left( \theta _{i},\theta _{-i}\right) d\theta _{-i}}
\end{equation*}が成り立つということです。自然はプレイヤー\(i\)に対してその人の真のタイプだけを伝えるため、真のタイプはプレイヤーの私的情報です。したがって、プレイヤー\(i\)の信念\(f_{i}=\left\{ f_{i}\left( \cdot |\theta_{i}\right) \right\} _{\theta _{i}\in \Theta _{i}}\)の中でも、どの信念\(f_{i}\left( \cdot |\theta_{i}\right) \)が真のタイプ\(\theta _{i}\)にもとづくものであるかはプレイヤー\(i\)の私的情報です。

一般に、全員の信念\(\left\{ f_{i}\right\} _{i\in I}\)と整合的であるような同時確率関数\(f^{\ast }\)は存在するとは限らないため、ベイジアンゲームはハーサニ変換であるとは限りません。ベイジアンゲーム\(G\)がハーサニ変換可能である場合、変換後のゲームを\(\Gamma \)で表記します。これはベイジアンゲーム\(G\)の要素に共通事前分布\(f^{\ast }\)を加えることで得られるゲーム\begin{equation*}\Gamma =\left( I,\left\{ A_{i}\right\} _{i\in I},\left\{ \Theta _{i}\right\}
_{i\in I},\left\{ u_{i}\right\} _{i\in I},f^{\ast }\right)
\end{equation*}です。

ベイジアンゲーム\(G\)は静学ゲームである一方、ハーサニ変換後のゲーム\(\Gamma \)は自然が最初に行動し、続いてプレイヤーたちが行動する動学ゲームです。加えて、自然はそれぞれのプレイヤー\(i\)に対してその人の真のタイプだけを伝えるため、プレイヤー\(i\)は自分以外の任意のプレイヤー\(j\ \left(\not=i\right) \)の真のタイプを知ることができません。つまり、それぞれのプレイヤー\(i\)は自身が行動する手番において、そこまでのゲームの歴史を完全に把握しておらず、したがってハーサニ変換後のゲーム\(\Gamma \)は不完全情報ゲームです。また、ベイジアンゲーム\(G\)のすべての要素は共有知識であり、なおかつ共通事前分布\(f^{\ast }\)もまた共有知識であるため、ハーサニ変換後のゲーム\(\Gamma \)のすべての要素もまた共有知識です。

ハーサニ変換前のベイジアンゲーム\(G\)では、プレイヤーの信念は私的情報であるため、プレイヤーは他のプレイヤーたちのタイプを予想するだけでなく、他のプレイヤーたちがどのような信念を持っているかを予想する必要があり、加えて、自分の信念を他のプレイヤーたちがどのように予想しているかを予想する必要があるなど、検討すべき要素が無限に積み重なってしまいます。ベイジアンゲームを分析する際の困難はここにあります。一方、ハーサニ変換後のゲーム\(\Gamma \)では、形式的には全員が共通の主観的予想を持っていることが保証され、さらにその事実が共有知識になります。したがって、ハーサニ変換後のゲーム\(\Gamma \)においては、他のプレイヤーたちの信念を予想したり、また、自分の信念を他のプレイヤーたちがどのように予想しているかを予想するなど、そのような複雑なことを考える必要がありません。ただ、ハーサニ変換後のゲーム\(\Gamma \)においても、プレイヤーの真のタイプは依然として私的情報です。そのため、ハーサニ変換後のゲーム\(\Gamma \)におけるプレイヤー\(i\)の純粋戦略もまた、変換前のベイジアンゲーム\(G\)と同様に、\begin{equation*}s_{i}:\Theta _{i}\rightarrow A_{i}
\end{equation*}と定式化されます。つまり、純粋戦略\(s_{i}\)のもとで、プレイヤー\(i\)は自身のタイプが\(\theta _{i}\in \Theta _{i}\)である場合には行動\(s_{i}\left( \theta _{i}\right) \in A_{i}\)を選択するということです。

 

事前期待利得

ハーサニ変換後のゲーム\(\Gamma \)において任意のプレイヤー\(i\)は共通事前分布\(f^{\ast }\)と整合的な信念\(f_{i}\)を持っているため、変換前のベイジアンゲーム\(G\)と同様、自身のタイプ\(\theta _{i}\)を知った段階において、純粋戦略の組\(s_{I}\)がもたらす中間期待利得\begin{equation*}E_{\theta _{-i}}\left[ u_{i}\left( s_{I}\left( \theta _{I}\right) ,\theta
_{I}\right) \ |\ \theta _{i}\right] \end{equation*}を計算できます。加えて、ハーサニ変換後のゲーム\(\Gamma \)では、変換前のゲーム\(G\)とは異なり、任意のプレイヤーは共通事前分布\(f^{\ast }\)を知っているため、自身のタイプ\(\theta _{i}\)を知る前の段階において、純粋戦略の組\(s_{I}\)がもたらす利得の期待値を計算できます。具体的には、タイプ集合が離散型である場合には、\begin{equation*}\sum_{\theta _{I}\in \Theta _{I}}\left[ u_{i}\left( s_{I}\left( \theta
_{I}\right) ,\theta _{I}\right) \cdot f^{\ast }\left( \theta _{I}\right) \right] \end{equation*}となり、タイプ集合が連続型である場合には、\begin{equation*}
\int_{\theta _{I}\in \Theta _{I}}\left[ u_{i}\left( s_{I}\left( \theta
_{I}\right) ,\theta _{I}\right) \cdot f^{\ast }\left( \theta _{I}\right) \right] d\theta _{I}
\end{equation*}となります。そこで、これを純粋戦略の組\(s_{I}\)からプレイヤー\(i\)が得る事前期待利得(ex-ante expected payoff)と呼び、\begin{equation*}E_{\theta _{I}}\left[ u_{i}\left( s_{I}\left( \theta _{I}\right) ,\theta
_{I}\right) \ |\ \theta _{I}\right] \end{equation*}で表記します。

ハーサニ変換後のゲーム\(\Gamma \)において、中間期待利得と事前期待利得の間には以下の関係が成り立ちます。

命題(事前期待利得と中間期待利得の関係)
ハーサニ変換後のゲーム\(\Gamma \)において、純粋戦略の組\(s_{I}\in S_{i}\)とプレイヤー\(i\in I\)をそれぞれ任意に選んだとき、タイプ集合が離散型の場合には、\begin{equation*}E_{\theta _{I}}\left[ u_{i}\left( s_{I}\left( \theta _{I}\right) ,\theta
_{I}\right) \ |\ \theta _{I}\right] =\sum_{\theta _{i}\in \Theta
_{i}}\left\{ E_{\theta _{-i}}\left[ u_{i}\left( s_{I}\left( \theta
_{I}\right) ,\theta _{I}\right) \ |\ \theta _{i}\right] \cdot f^{\ast
}\left( \theta _{i}\right) \right\}
\end{equation*}という関係が成り立つ。ただし、\(f^{\ast }\left( \theta_{i}\right) \)は共通事前分布\(f^{\ast }:\Theta _{I}\rightarrow \left[ 0,1\right] \)から得られる\(\theta _{i}\)に関する周辺確率分布であり、\begin{equation*}f^{\ast }\left( \theta _{i}\right) =\sum_{\theta _{-i}\in \Theta
_{-i}}f^{\ast }\left( \theta _{i},\theta _{-i}\right)
\end{equation*}である。また、タイプ集合が連続型の場合には、\begin{equation*}
E_{\theta _{I}}\left[ u_{i}\left( s_{I}\left( \theta _{I}\right) ,\theta
_{I}\right) \ |\ \theta _{I}\right] =\int_{\theta _{i}\in \Theta
_{i}}\left\{ E_{\theta _{-i}}\left[ u_{i}\left( s_{I}\left( \theta
_{I}\right) ,\theta _{I}\right) \ |\ \theta _{i}\right] \cdot f^{\ast
}\left( \theta _{i}\right) \right\} d\theta _{i}
\end{equation*}という関係が成り立つ。ただし、\(f^{\ast }\left( \theta_{i}\right) \)は共通事前分布\(f^{\ast }:\Theta _{I}\rightarrow \left[ 0,1\right] \)から得られる\(\theta _{i}\)に関する周辺確率分布であり、\begin{equation*}f^{\ast }\left( \theta _{i}\right) =\int_{\theta _{-i}\in \Theta
_{-i}}f^{\ast }\left( \theta _{i},\theta _{-i}\right) d\theta _{-i}
\end{equation*}である。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

 

ハーサニ変換後のゲームにおける事前ベイジアンナッシュ均衡

ベイジアンゲーム\(G\)においてそれぞれのプレイヤーは、ベイジアン仮説のもと、自身のタイプにもとづく信念から導出される中間期待利得を最大化するような純粋戦略を選択します。一方、ハーサニ変換後のゲーム\(\Gamma \)においてそれぞれのプレイヤーは、自身のタイプ\(\theta _{i}\)を知る前の段階において、事前期待利得を最大化するような純粋戦略を選択できます。言い換えると、共通事前分布にもとづいて市場の真の状態を予想し、その予想から導出される事前期待利得を最大化するような純粋戦略を模索できるということです。以上を踏まえた上で、ハーサニ変換後のゲーム\(\Gamma \)における均衡概念を以下のように考えます。

ハーサニ変換後のゲーム\(\Gamma \)において、プレイヤー\(i\)が他のプレイヤーたちの純粋戦略\(s_{-i}\in S_{-i}\)に直面した状況を想定します。仮に市場の状態が\(\theta _{I}=\left(\theta _{i},\theta _{-i}\right) \in \Theta _{I}\)である場合、他のプレイヤーたち選ぶ行動は\(s_{-i}\left( \theta _{-i}\right) \in A_{-i}\)となります。仮にプレイヤーが純粋戦略\(s_{i}\in S_{i}\)を選ぶのであれば、彼が選ぶ行動は\(s_{i}\left( \theta _{i}\right) \in A_{i}\)となります。状態\(\theta _{I}\)におけるプレイヤー\(i\)の利得関数は\(u_{i}\left(\cdot |\theta _{I}\right) \)であるため、以上の想定のもとでプレイヤー\(i\)が得る利得は、\begin{equation*}u_{i}\left( s_{i}\left( \theta _{i}\right) ,s_{-i}\left( \theta _{-i}\right)
,\theta _{I}\right)
\end{equation*}であり、プレイヤー\(i\)はこの利得を事前に把握しています。加えて、プレイヤー\(i\)は状態\(\theta _{I}\)がしたがう確率分布に相当する共通事前分布\(f^{\ast }:\Theta _{I}\rightarrow \left[ 0,1\right] \)を把握しているため、他のプレイヤーたちが\(s_{-i}\)を選ぶという前提のもとで自分は\(s_{i}\)を選ぶ場合、自身が直面する事前期待利得を、\begin{eqnarray*}&&E_{\theta _{I}}\left[ u_{i}\left( s_{i}\left( \theta _{i}\right)
,s_{-i}\left( \theta _{-i}\right) ,\theta _{I}\right) \ |\ \theta _{I}\right] \\
&=&\sum_{\theta _{I}\in \Theta _{I}}\left[ u_{i}\left( s_{i}\left( \theta
_{i}\right) ,s_{-i}\left( \theta _{-i}\right) ,\theta _{I}\right) \cdot
f^{\ast }\left( \theta _{I}\right) \right] \quad \because \text{タイプ集合が離散型の場合} \\
&=&\int_{\theta _{I}\in \Theta _{I}}\left[ u_{i}\left( s_{i}\left( \theta
_{i}\right) ,s_{-i}\left( \theta _{-i}\right) ,\theta _{I}\right) \cdot
f^{\ast }\left( \theta _{I}\right) \right] d\theta _{I}\quad \because \text{タイプ集合が連続型の場合}
\end{eqnarray*}と計算できます。他のプレイヤーたちが\(s_{-i}\)を選ぶという前提のもとで自身は純粋戦略\(s_{i}^{\ast }\)にしたがって行動すれば事前期待利得を最大化できる場合には、すなわち、\begin{equation*}\forall s_{i}\in S_{i}:E_{\theta _{I}}\left[ u_{i}\left( s_{i}^{\ast }\left(
\theta _{i}\right) ,s_{-i}\left( \theta _{-i}\right) ,\theta _{I}\right) \
|\ \theta _{I}\right] \geq E_{\theta _{I}}\left[ u_{i}\left( s_{i}\left(
\theta _{i}\right) ,s_{-i}\left( \theta _{-i}\right) ,\theta _{I}\right) \
|\ \theta _{I}\right] \end{equation*}が成り立つ場合には、\(s_{i}^{\ast }\)を\(s_{-i}\)に対する事前最適反応(ex-antebest response)と呼びます。

つまり、ハーサニ変換後のゲーム\(\Gamma \)においてプレイヤー\(i\)の純粋戦略\(s_{i}^{\ast }\)が他のプレイヤーたちの純粋戦略\(s_{-i}\)に対する事前最適反応であることとは、他のプレイヤーたちが\(s_{-i}\)にしたがって行動することを前提とした場合、さらに自身が共通事前分布\(f^{\ast }\)にもとづいて状態を予想する場合、自分は\(s_{i}^{\ast }\)にしたがって行動すれば、自身が直面する事前期待利得を常に最大化できることを意味します。

例(私的価値モデルの場合)
プレイヤー\(i\)の利得関数\(u_{i}\)に関して私的価値の仮定が成り立つ場合には、\(u_{i}\)の形状は他のプレイヤーたちのタイプの組\(\theta _{-i}\)に依存せず、自身のタイプ\(\theta _{i}\)にのみ依存するため、共通事前分布\(f^{\ast }\)のもとで、プレイヤー\(i\)の純粋戦略\(s_{i}\)が他のプレイヤーの純粋戦略\(s_{-i}\)に対する最適反応であることは、\begin{equation*}\forall s_{i}\in S_{i}:E_{\theta _{I}}\left[ u_{i}\left( s_{i}^{\ast }\left(
\theta _{i}\right) ,s_{-i}\left( \theta _{-i}\right) ,\theta _{i}\right) \
|\ \theta _{I}\right] \geq E_{\theta _{I}}\left[ u_{i}\left( s_{i}\left(
\theta _{i}\right) ,s_{-i}\left( \theta _{-i}\right) ,\theta _{i}\right) \
|\ \theta _{I}\right] \end{equation*}が成り立つことを意味します。

最適戦略の概念は、他のプレイヤーたちの純粋戦略からなる特定の組\(s_{-i}\)に対して定義されるものであることに注意する必要があります。つまり、\(s_{i}\)が\(s_{-i}\)に対する最適戦略である場合、この\(s_{i}\)は\(s_{-i}\)とは異なる\(s_{-i}^{\prime }\)に対する最適戦略であるとは限りません。

ハーサニ変換後のゲーム\(\Gamma \)における純粋戦略の組\(s_{I}^{\ast }=\left( s_{i}^{\ast }\right)_{i\in I}\in S_{I}\)において、任意のプレイヤー\(i\)の純粋戦略\(s_{i}^{\ast }\)が他のプレイヤーたちの純粋戦略\(s_{-i}^{\ast }\)に対する最適反応になっているならば、すなわち、\begin{equation*}\forall i\in I,\ \forall s_{i}\in S_{i}:E_{\theta _{I}}\left[ u_{i}\left(
s_{i}^{\ast }\left( \theta _{i}\right) ,s_{-i}^{\ast }\left( \theta
_{-i}\right) ,\theta _{I}\right) \ |\ \theta _{I}\right] \geq E_{\theta _{I}}\left[ u_{i}\left( s_{i}\left( \theta _{i}\right) ,s_{-i}^{\ast }\left(
\theta _{-i}\right) ,\theta _{I}\right) \ |\ \theta _{I}\right] \end{equation*}が成り立つならば、\(s_{I}^{\ast }\)を\(\Gamma \)における事前ベイジアンナッシュ均衡(ex-ante Bayesian Nash equilibrium)と呼びます。

例(私的価値モデルの場合)
プレイヤー\(i\)の利得関数\(u_{i}\)に関して私的価値の仮定が成り立つ場合には、\(u_{i}\)の形状は他のプレイヤーたちのタイプの組\(\theta _{-i}\)に依存せず、自身のタイプ\(\theta _{i}\)にのみ依存するため、共通事前分布\(f^{\ast }\)のもとで、純粋戦略の組\(s_{I}^{\ast }\)が事前ベイジアンナッシュ均衡であることは、\begin{equation*}\forall i\in I,\ \forall s_{i}\in S_{i}:E_{\theta _{I}}\left[ u_{i}\left(
s_{i}^{\ast }\left( \theta _{i}\right) ,s_{-i}^{\ast }\left( \theta
_{-i}\right) ,\theta _{i}\right) \ |\ \theta _{I}\right] \geq E_{\theta _{I}}\left[ u_{i}\left( s_{i}\left( \theta _{i}\right) ,s_{-i}^{\ast }\left(
\theta _{-i}\right) ,\theta _{i}\right) \ |\ \theta _{I}\right] \end{equation*}が成り立つことを意味します。

ハーサニ変換後のゲーム\(\Gamma \)において純粋戦略の組\(s_{I}^{\ast }\)が事前ベイジアンナッシュ均衡であるものとします。プレイヤー\(i\)を任意に選んだ上で、他のすべてのプレイヤーが均衡戦略\(s_{-i}^{\ast }\)にしたがって行動することを前提とするとき、プレイヤー\(i\)だけが均衡戦略\(s_{i}^{\ast }\)から逸脱して他の純粋戦略\(s_{i}\)を選ぶと、事前ベイジアンナッシュ均衡の定義より、\begin{equation*}E_{\theta _{I}}\left[ u_{i}\left( s_{i}^{\ast }\left( \theta _{i}\right)
,s_{-i}^{\ast }\left( \theta _{-i}\right) ,\theta _{i}\right) \ |\ \theta
_{I}\right] \geq E_{\theta _{I}}\left[ u_{i}\left( s_{i}\left( \theta
_{i}\right) ,s_{-i}^{\ast }\left( \theta _{-i}\right) ,\theta _{i}\right) \
|\ \theta _{I}\right] \end{equation*}という関係が成り立つため、プレイヤー\(i\)はそのような逸脱から得できる可能性はありません。同様の議論は任意のプレイヤーについて成り立ちます。つまり、事前ベイジアンナッシュ均衡ではプレイヤーたちの戦略がお互いに最適反応になっているため、誰もそこから逸脱する動機を持たないということです。ただし、プレイヤーたちが事前ベイジアンナッシュ均衡\(s_{I}^{\ast }\)を実際にプレーすることを保証するためには、それぞれのプレイヤー\(i\)が、他のプレイヤーたちが均衡戦略\(s_{-i}^{\ast }\)にしたがうことを正しく予想する必要があります。これはどのような理屈によって正当化できるのでしょうか。この点については場を改めて議論します。

 

ベイズ同値仮説

ベイジアンゲーム\(G\)におけるプレイヤーの意思決定に関してベイジアン仮説を採用しました。つまり、それぞれのプレイヤーは自身のタイプを知っている一方で他のプレイヤーたちのタイプを知りませんが、このような不確実な状況において、それぞれのプレイヤー\(i\)は自身のタイプ\(\theta_{i}\)と信念\(f_{i}\)にもとづいて他のプレイヤーたちのタイプ\(\theta _{-i}\)を予想し、その予想から算出される中間期待利得を最大化するような純粋戦略を選ぶものと仮定しました。

一方、ベイジアンゲーム\(G\)をハーサニ変換することで得られるゲーム\(\Gamma \)において、それぞれのプレイヤー\(i\)は共通事前分布\(f^{\ast }\)と整合的な信念\(f_{i}\)を持っているため、変換前のゲーム\(G\)と同じ要領で、プレイヤー\(i\)は自身の中間期待利得を最大化するような純粋戦略を最大化することも可能です。ただ、そのような意思決定が可能である場合においても、ベイジアンゲーム\(G\)とハーサニ変換後のゲーム\(\Gamma \)においてプレイヤーが直面する状況は厳密には異なるため、その結果、プレイヤーによる意思決定の内容も変化する可能性があります。具体的には、ハーサニ変換前のゲーム\(G\)においてプレイヤー\(i\)の信念\(f_{i}\)は私的情報であり、なおかつ\(f_{i}\)は自身のタイプ\(\theta _{i}\)の分布に関する情報を含んでいません。一方、ハーサニ変換後のゲーム\(\Gamma \)においてプレイヤー\(i\)は共通知識である共通事前分布\(f^{\ast }\)と整合的な信念\(f_{i}\)を持っており、なおかつ\(f^{\ast }\)から自身のタイプ\(\theta _{i}\)の分布を導くこともできます。以上の論点は存在しますが、そのことを踏まえた上でも、任意のプレイヤーにとってハーサニ変換の前後の2つのゲームは戦略上の観点からは同値であり、プレイヤーによる意思決定はどちらのゲームにおいても同一の均衡概念にしたがって行われるものと仮定する場合、そのような仮定をベイズ同値仮説と呼びます。

具体的には、ハーサニ変換後のゲーム\(\Gamma \)に直面したそれぞれのプレイヤー\(i\)は、自身のタイプ\(\theta _{i}\)および共通事前分布\(f^{\ast }\)と整合的な信念\(f_{i}\)にもとづいて他のプレイヤーたちのタイプ\(\theta _{-i}\)を予想し、その予想から算出される中間期待利得を最大化するような純粋戦略を選択するものと仮定するということです。ベイズ同値仮説より、その場合の均衡概念は中間ベイジアンナッシュ均衡です。加えて、ハーサニ変換前のゲーム\(G\)における信念\(f_{i}\)に対して、それと整合的な共通事前分布\(f^{\ast }\)を採用すれば、結局、\(G\)における中間ベイジアンナッシュ均衡と\(\Gamma \)における中間ベイジアンナッシュ均衡は一致します。

加えて、以下の命題が成り立ちます。

命題(ハーサニ変換後のゲームにおける均衡)
ベイジアンゲーム\(G\)において純粋戦略の組\(s_{I}\in S_{i}\)が中間ベイジアンナッシュ均衡であることと、ハーサニ変換後のゲーム\(\Gamma \)において先の\(s_{I}\)が事前ベイジアンナッシュ均衡であることは必要十分である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

以上の考察より、ベイズ同値仮説を採用する場合には以下の3つの均衡が一致することが明らかになりました。

  1. ベイジアンゲーム\(G\)における中間ベイジアンナッシュ均衡
  2. ハーサニ変換後のゲーム\(\Gamma \)における中間ベイジアンナッシュ均衡
  3. ハーサニ変換後のゲーム\(\Gamma \)における事前ベイジアンナッシュ均衡

以上の3つの均衡が等しいのであれば、わざわざハーサニ変換を行って\(\Gamma \)を作成するのではなく、変換前のゲーム\(G\)だけを分析対象とすればよいと考えるかもしれません。ただ、\(\Gamma \)は\(G\)よりも扱いやすい形をしているため分析が容易になります。

Share on twitter
Twitterで共有
Share on email
メールで共有
DISCUSSION

質問とコメント

プレミアム会員専用コンテンツです
ログイン】【会員登録

RELATED KNOWLEDGE

関連知識

ベイジアンゲーム
ベイジアンゲームの定義

不完備情報の静学ゲームを記述するためにはプレイヤー、行動、情報、結果、利得などをそれぞれ具体的に特定する必要があります。それらの要素を記述する方法はいくつか存在しますが、ここではベイジアンゲームと呼ばれるモデルについて解説します。

ベイジアンゲーム
ベイジアンゲームの私的価値モデル

不完備情報の静学ゲームをベイジアンゲームとして表現するとき、すべてのプレイヤーの利得関数が自身のタイプのみに依存し、他のプレイヤーのタイプに依存しないものと仮定する場合には、そのようなモデルを私的価値モデルと呼びます。

ベイジアンゲーム
メカニズムのもとでのゲーム

単一財オークション市場においてメカニズムを提示された入札者たちが直面する戦略的状況はベイジアンゲームとして定式化されます。そのようなゲームにおいて、それぞれの入札者は自身のタイプと信念にもとづいて他の入札者たちのタイプを予想し、その予想から算出される中間期待利得を最大化するような純粋戦略を採用するものと仮定します。

ハーサニ変換
共通事前分布とハーサニ変換

メカニズムのもとでのベイジアンゲームは不完備情報であり、そこに均衡は存在するとは限りません。一方、共通事前分布を導入してゲームをハサーニ変換すればゲームは完備情報ゲームになるため、均衡の存在を保証できるとともに分析が容易になります。

ベイジアンゲーム
ベイジアンゲームにおける純粋戦略

不完備情報の静学ゲームをベイジアンゲームとして表現したとき、プレイヤーによる意思決定は純粋戦略と呼ばれる概念として定式化されます。プレイヤーの純粋戦略とは、自身のそれぞれのタイプに対して行動を1つずつ定める行動計画です。

ベイジアンゲーム
ベイジアンゲームにおける信念

ベイジアンゲームにおいて不確実な状況下で意思決定を迫られるプレイヤーは、自身のそれぞれのタイプに対して、その場合に自分が直面し得る状態ゲームがそれぞれどの程度の確率で起こりえるか主観的に定めた上で、その予想にもとづいて意思決定を行うものとします。

ベイジアンゲーム
中間期待利得とベイジアン仮説

不完備情報の静学ゲームを表現するベイジアンゲームに直面したそれぞれのプレイヤーは、自身のタイプと信念にもとづいて他のプレイヤーたちのタイプを予想し、その予想から算出される中間期待利得を最大化するような純粋戦略を採用するものと仮定します。

ベイジアンゲーム
ベイジアンゲームにおける支配戦略均衡

ベイジアンゲームにおいてプレイヤーがある純粋戦略を選ぶとき、自身を含めた全員のタイプや他のプレイヤーたちの行動、信念に関わらず利得を常に最大化できるならば、そのような戦略を支配純粋戦略と呼びます。支配純粋戦略の組を支配純粋戦略均衡と呼びます。

ベイジアンゲーム
ベイジアンゲームにおける事後均衡

ベイジアンゲームにおいて他のプレイヤーたちの純粋戦略に直面したプレイヤーがある純粋戦略を選ぶ場合、自身のタイプや他のプレイヤーたちのタイプによらず利得を最大化できる場合、そのような純粋戦略を事後最適反応と呼びます。事後最適反応の組を事後均衡と呼びます。

ベイジアンゲーム
ベイジアンナッシュ均衡

ベイジアンナッシュ均衡における最適反応の概念を定義するとともに、最適反応であるような純粋戦略の組としてベイジアンナッシュ均衡と呼ばれる均衡概念を定義します。

ベイジアンゲーム
ベイジアンナッシュ均衡と事後均衡の関係

ベイジアンゲームにおいて、事後均衡はベイジアンナッシュ均衡でもある一方で、その逆は成り立つとは限りません。また、支配戦略均衡はベイジアンナッシュ均衡でもある一方で、その逆は成り立つとは限りません。

ベイジアンゲーム
ベイジアンゲームにおける高階の信念と共通事前分布

ベイジアンゲームにおいてプレイヤーたちが各々のタイプを読み合う可能性を認めると、ゲームの分析が突如として複雑になってしまいます。このような問題を解消するために、多くの場合、プレイヤーたちのタイプに関して共通事前分布という仮定を設けます。