WIIS

離散型の確率分布

同一分布にしたがう離散型の確率変数列

目次

関連知識

Mailで保存
Xで共有

同一分布にしたがう確率変数列

問題としている試行に関する確率空間\(\left(\Omega ,\mathcal{F},P\right) \)に加えて確率変数\begin{equation*}X:\Omega \rightarrow \mathbb{R} \end{equation*}が与えられている場合、「確率変数\(X\)の値が集合\(A\subset \mathbb{R} \)に属する」という事象は、\(X\left( \omega \right) \in A\)を満たす標本点\(\omega \)からなる集合\begin{equation*}\left\{ \omega \in \Omega \ |\ X\left( \omega \right) \in A\right\}
\end{equation*}として表現されるため、「確率変数\(X\)の値が集合\(A\)に属する」という事象が起こる確率は、\begin{equation*}P\left( X\in A\right) =P\left( \left\{ \omega \in \Omega \ |\ X\left( \omega
\right) \in A\right\} \right)
\end{equation*}となります。任意の集合\(A\subset \mathbb{R} \)に対して、確率変数\(X\)の値が\(A\)に属する確率\(P\left( X\in A\right) \)が明らかになっている場合、そのような情報の集まりを確率変数\(X\)の確率分布と呼びました。

問題としている試行に関する確率ベクトル\begin{equation*}
\left( X_{1},\cdots ,X_{n}\right) :\Omega \rightarrow \mathbb{R} ^{n}
\end{equation*}が与えられている状況において、\(n\)個の確率変数\begin{gather*}X_{1}:\Omega \rightarrow \mathbb{R} \\
\vdots \\
X_{n}:\Omega \rightarrow \mathbb{R} \end{gather*}が同一分布にしたがうことを、どのような集合\(A\subset \mathbb{R} \)を選んだ場合でも、個々の確率変数\(X_{1},\cdots ,X_{n}\)の値が集合\(A\)に属する確率が一致すること、すなわち、\begin{equation*}\forall A\subset \mathbb{R} :P\left( X_{1}\in A\right) =\cdots =P\left( X_{n}\in A\right)
\end{equation*}が成り立つこととして定義しました。以上を踏まえた上で、確率変数列が同一分布にしたがうことの意味を定義します。

問題としている試行に関する確率空間\(\left(\Omega ,\mathcal{F},P\right) \)に加えて、標本空間\(\Omega \)を定義域として共有する確率変数列\(\left\{ X_{n}\right\} \)が与えられているものとします。つまり、この確率変数列\(\left\{ X_{n}\right\} \)の一般項は\(\Omega \)上に定義された確率変数\begin{equation*}X_{n}:\Omega \rightarrow \mathbb{R} \end{equation*}です。確率変数列\(\left\{X_{n}\right\} \)は無限個の確率変数の並び\begin{equation*}X_{1},X_{2},\cdots ,X_{n},\cdots
\end{equation*}ですが、この中から有限個の確率変数を任意に選んだときに、それらが同一分布にしたがうことが保証される場合には、もとの確率変数列\(\left\{X_{n}\right\} \)は同一分布にしたがう(identically distributed)と言います。では、確率変数列\(\left\{ X_{n}\right\} \)から「有限個の確率変数を任意に選ぶ」場合の選び方をすべて網羅するためにはどのように考えればよいでしょうか。まずは、\(\left\{ X_{n}\right\} \)から選んでくる確率変数の個数\(N\in \mathbb{N} \)によって場合を分ける必要があります。確率変数の個数\(N\)が決まったら、次は\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)として何を選ぶかによって場合を分ける必要があります。その上で、選んだ\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)が同一分布にしたがうことが保証されるのであれば、もとの確率変数列\(\left\{X_{n}\right\} \)は同一分布にしたがいます。

改めて整理すると、確率変数列\(\left\{ X_{n}\right\} \)が同一分布にしたがうこととは、自然数\(N\in \mathbb{N} \)および\(\left\{ X_{n}\right\} \)の項である有限\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)をそれぞれ任意に選んだときに、\begin{equation*}\forall A\subset \mathbb{R} :P\left( X_{1}\in A\right) =\cdots =P\left( X_{N}\in A\right)
\end{equation*}が成り立つこととして定義されます。以上が確率変数列が同一分布にしたがうことの厳密な定義です。

逆に、確率変数列\(\left\{X_{n}\right\} \)が同一分布にしたがわないこととは、何らかの自然数\(N\in \mathbb{N} \)および\(\left\{ X_{n}\right\} \)の項である有限\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)のもとで、\begin{equation*}\exists A\subset \mathbb{R} ,\ \exists i,j\in \left\{ 1,\cdots ,N\right\} :P\left( X_{i}\in A\right)
\not=P\left( X_{j}\in A\right)
\end{equation*}が成り立つことを意味します。この場合、確率変数列\(\left\{ X_{n}\right\} \)は同一分布にしたがわない(not identically distributed)と言います。

 

同一分布にしたがう離散型の確率変数列

問題としている試行に関する確率空間\(\left(\Omega ,\mathcal{F},P\right) \)に加えて、標本空間\(\Omega \)を定義域として共有する離散型の確率変数列\(\left\{X_{n}\right\} \)が与えられているものとします。つまり、この確率変数列\(\left\{ X_{n}\right\} \)の一般項は\(\Omega \)上に定義された確率変数\begin{equation*}X_{n}:\Omega \rightarrow \mathbb{R} \end{equation*}であるとともに、その値域\begin{equation*}
X_{n}\left( \Omega \right)
\end{equation*}は有限集合または可算集合であるということです。

自然数\(N\in \mathbb{N} \)を任意に選んだ上で、確率変数列\(\left\{ X_{n}\right\} \)から有限\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)を任意に選びます。これらの確率変数の確率ベクトル\begin{equation*}\left( X_{1},\cdots ,X_{N}\right) :\Omega \rightarrow \mathbb{R} ^{N}
\end{equation*}の同時確率分布が同時確率質量関数\begin{equation*}
f_{X_{1}\cdots X_{N}}:\mathbb{R} ^{N}\rightarrow \mathbb{R} \end{equation*}によって記述されているものとします。つまり、確率ベクトル\(\left( X_{1},\cdots ,X_{N}\right) \)の値がベクトル\(\left( x_{1},\cdots ,x_{N}\right) \in \mathbb{R} ^{N}\)と一致する確率は、\begin{equation*}P\left( X_{1}=x_{1}\wedge \cdots \wedge X_{N}=x_{N}\right) =f_{X_{1}\cdots
X_{N}}\left( x_{1},\cdots ,x_{N}\right)
\end{equation*}であり、確率ベクトル\(\left( X_{1},\cdots ,X_{N}\right) \)の値が集合\(A_{1}\times \cdots \times A_{N}\subset \mathbb{R} ^{N}\)に属する確率は、\begin{equation*}P\left( \left( X_{1},\cdots ,X_{N}\right) \in A_{1}\times \cdots \times
A_{N}\right) =\sum_{\left( x_{1},\cdots ,x_{N}\right) \in A_{1}\times \cdots
\times A_{N}}f_{X_{1}\cdots X_{N}}\left( x_{1},\cdots ,x_{N}\right)
\end{equation*}であるということです。同時確率質量関数\(f_{X_{1}\cdots X_{N}}\)を周辺化することにより個々の確率変数\begin{gather*}X_{1}:\Omega \rightarrow \mathbb{R} \\
\vdots \\
X_{N}:\Omega \rightarrow \mathbb{R} \end{gather*}の周辺確率分布を描写する周辺確率質量関数\begin{gather*}
f_{X_{1}}:\mathbb{R} \rightarrow \mathbb{R} \\
\vdots \\
f_{X_{N}}:\mathbb{R} \rightarrow \mathbb{R} \end{gather*}がそれぞれ得られます。周辺確率質量関数の定義より、集合\(A_{1},\cdots ,A_{N}\subset \mathbb{R} \)を任意に選んだとき、\begin{gather*}P\left( X_{1}\in A_{1}\right) =\sum_{x_{1}\in A_{1}}f_{X_{1}}\left(
x_{1}\right) \\
\vdots \\
P\left( X_{N}\in A_{N}\right) =\sum_{x_{N}\in A_{N}}f_{X_{N}}\left(
x_{N}\right)
\end{gather*}が成り立つことに注意してください。

先に定義したように、確率変数列\(\left\{ X_{n}\right\} \)が同一分布にしたがうこととは、自然数\(N\in \mathbb{N} \)および\(\left\{ X_{n}\right\} \)の項である有限\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)をそれぞれ任意に選んだときに、\begin{equation*}\forall A\subset \mathbb{R} :P\left( X_{1}\in A\right) =\cdots =P\left( X_{N}\in A\right)
\end{equation*}が成り立つこととして定義されますが、\(\left\{ X_{n}\right\} \)が離散型である場合、これが同一分布にしたがうことを確率質量関数を用いて以下のように表現できます。

命題(同一分布にしたがう離散型の確率変数列)
確率空間\(\left( \Omega ,\mathcal{F},P\right) \)に加えて、標本空間\(\Omega \)を定義域として共有する離散型の確率変数列\(\left\{ X_{n}\right\} \)が与えられているものとする。自然数\(N\in \mathbb{N} \)および\(\left\{ X_{n}\right\} \)の項である有限\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)をそれぞれ任意に選んだときに、\begin{equation*}\forall x\in \mathbb{R} :f_{X_{1}}\left( x\right) =\cdots =f_{X_{N}}\left( x\right)
\end{equation*}が成り立つことは、すなわち、\begin{equation*}
f_{X_{1}}=\cdots =f_{X_{N}}
\end{equation*}が成り立つことは、\(X_{1},\cdots ,X_{N}\)が同一分布にしたがうための必要十分条件である。ただし、\(f_{X_{1}\cdots X_{N}}:\mathbb{R} ^{N}\rightarrow \mathbb{R} \)は確率ベクトル\(\left(X_{1},\cdots ,X_{N}\right) :\Omega \rightarrow \mathbb{R} ^{N}\)の同時確率質量関数であり、\(f_{X_{n}}:\mathbb{R} \rightarrow \mathbb{R} \ \left( n=1,\cdots ,N\right) \)は個々の確率変数\(X_{n}:\Omega \rightarrow \mathbb{R} \)の周辺確率質量関数である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(同一分布にしたがう確率変数列)
「コインを無限回投げる」という試行の個々の標本点は、\begin{equation*}
\left( \text{表},\text{裏},\text{裏},\text{表},\cdots \right)
\end{equation*}のような「表」と「裏」から構成される無限列として表されます。\(n\)回目のコイン投げの結果を、\begin{equation*}\omega _{n}\in \left\{ \text{表},\text{裏}\right\}
\end{equation*}と表記するのであれば、それぞれの標本点を、\begin{equation*}
\omega =\left( \omega _{1},\omega _{2},\cdots \right)
\end{equation*}と定式化できます。この試行の標本空間は、\begin{equation*}
\Omega =\left\{ \text{表},\text{裏}\right\} ^{\mathbb{N} }
\end{equation*}です。自然数\(n\in \mathbb{N} \)を任意に選んだ上で、それぞれの標本点\(\omega \in \Omega \)に対して、\begin{eqnarray*}X_{n}\left( \omega \right) &=&n\text{回目に表が出た回数} \\
&=&\left\{
\begin{array}{cc}
1 & \left( if\ \omega _{n}=\text{表}\right) \\
0 & \left( if\ \omega _{n}=\text{裏}\right)
\end{array}\right.
\end{eqnarray*}を定める確率変数\begin{equation*}
X_{n}:\Omega \rightarrow \mathbb{R} \end{equation*}を定義します。以上の確率変数\(X_{n}\)を一般項とする確率変数列\(\left\{ X_{n}\right\} \)が独立であることを示します。自然数\(N\in \mathbb{N} \)および\(\left\{ X_{n}\right\} \)の項である有限\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)をそれぞれ任意に選びます。確率ベクトル\begin{equation*}\left( X_{1},\cdots ,X_{N}\right) :\Omega \rightarrow \mathbb{R} ^{N}
\end{equation*}の値域は、\begin{equation*}
\left( X_{1},\cdots ,X_{N}\right) \left( \Omega \right) =\left\{ 0,1\right\}
^{N}
\end{equation*}です。すべての標本点が同じ程度の確かさで起こり得るのであれば、同時確率質量関数\(f_{X_{1}\cdots X_{N}}:\mathbb{R} ^{N}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x_{1},\cdots,x_{N}\right) \in \mathbb{R} ^{N}\)に対して、\begin{equation*}f_{X_{1}\cdots X_{N}}\left( x_{1},\cdots ,x_{N}\right) =\left\{
\begin{array}{cl}
\frac{1}{2^{N}} & \left( if\ \left( x_{1},\cdots ,x_{N}\right) \in \left(
X_{1},\cdots ,X_{N}\right) \left( \Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right.
\end{equation*}を定めます。それぞれの確率変数\(X_{n}:\Omega \rightarrow \mathbb{R} \ \left( n=1,\cdots ,N\right) \)の値域は、\begin{equation*}X_{n}\left( \Omega \right) =\left\{ 0,1\right\}
\end{equation*}であり、\(X_{n}\)の周辺確率質量関数\(f_{X_{n}}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x_{n}\in \mathbb{R} \)に対して、\begin{equation}f_{X_{n}}\left( x_{n}\right) =\left\{
\begin{array}{cl}
\frac{1}{2} & \left( if\ x_{n}\in X_{n}\left( \Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (1)
\end{equation}を定めます。\(x\in \mathbb{R} \)を任意に選んだとき、\(\left( 1\right) \)より、\begin{equation*}f_{X_{1}}\left( x\right) =\cdots =f_{X_{N}}\left( x\right)
\end{equation*}が成り立つため、\(\left\{X_{n}\right\} \)は同一分布にしたがうことが明らかになりました。

確率変数列は同一分布にしたがうとは限りません。以下の例より明らかです。

例(同一分布にしたがわない確率変数列)
「コインを無限回投げる」という試行の個々の標本点は、\begin{equation*}
\left( \text{表},\text{裏},\text{裏},\text{表},\cdots \right)
\end{equation*}のような「表」と「裏」から構成される無限列として表されます。\(n\)回目のコイン投げの結果を、\begin{equation*}\omega _{n}\in \left\{ \text{表},\text{裏}\right\}
\end{equation*}と表記するのであれば、それぞれの標本点を、\begin{equation*}
\omega =\left( \omega _{1},\omega _{2},\cdots \right)
\end{equation*}と定式化できます。この試行の標本空間は、\begin{equation*}
\Omega =\left\{ \text{表},\text{裏}\right\} ^{\mathbb{N} }
\end{equation*}です。自然数\(n\in \mathbb{N} \)を任意に選んだ上で、それぞれの標本点\(\omega \in \Omega \)に対して、\begin{eqnarray*}X_{n}\left( \omega \right) &=&n\text{回目までに表が出た合計回数} \\
&=&\sum_{i=1}^{n}X_{i}\left( \omega \right)
\end{eqnarray*}を定める確率変数\begin{equation*}
X_{n}:\Omega \rightarrow \mathbb{R} \end{equation*}を定義します。以上の\(X_{n}\)を一般項とする確率変数列\(\left\{ X_{n}\right\} \)は同一分布にしたがいません(演習問題)。

 

分布関数を用いた離散型確率変数列が同一分布にしたがうことの表現

確率変数列が同一分布にしたがうことを分布関数を用いて表現することもできます。具体的には以下の通りです。

自然数\(N\in \mathbb{N} \)を任意に選んだ上で、確率変数列\(\left\{ X_{n}\right\} \)の項である有限\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)を任意に選びます。これらの確率変数の確率ベクトル\begin{equation*}\left( X_{1},\cdots ,X_{N}\right) :\Omega \rightarrow \mathbb{R} ^{N}
\end{equation*}の同時確率分布が同時分布関数\begin{equation*}
F_{X_{1}\cdots X_{N}}:\mathbb{R} ^{N}\rightarrow \mathbb{R} \end{equation*}によって記述されているものとします。つまり、確率ベクトル\(\left( X_{1},\cdots ,X_{N}\right) \)の値がベクトル\(\left( x_{1},\cdots ,x_{N}\right) \in \mathbb{R} ^{N}\)以下である確率は、\begin{eqnarray*}P\left( X_{1}\leq x_{1}\wedge \cdots \wedge X_{N}\leq x_{N}\right)
&=&F_{X_{1}\cdots X_{N}}\left( x_{1},\cdots ,x_{N}\right) \\
&=&\sum_{y_{1}\leq x_{1}}\cdots \sum_{y_{N}\leq x_{N}}f_{X_{1}\cdots
X_{N}}\left( y_{1},\cdots ,y_{N}\right)
\end{eqnarray*}であるということです。同時分布関数\(F_{X_{1}\cdots X_{N}}\)を周辺化することにより個々の確率変数\begin{gather*}X_{1}:\Omega \rightarrow \mathbb{R} \\
\vdots \\
X_{N}:\Omega \rightarrow \mathbb{R} \end{gather*}の周辺確率分布を描写する周辺分布関数\begin{gather*}
F_{X_{1}}:\mathbb{R} \rightarrow \mathbb{R} \\
\vdots \\
F_{X_{N}}:\mathbb{R} \rightarrow \mathbb{R} \end{gather*}が得られます。周辺分布関数の定義より、点\(x_{1},\cdots ,x_{N}\in \mathbb{R} \)を任意に選んだとき、\begin{eqnarray*}F_{X_{1}}\left( x_{1}\right) &=&P\left( X_{1}\leq x_{1}\right)
=\sum_{y_{1}\leq x_{1}}f_{X_{1}}\left( y_{1}\right) \\
&&\vdots \\
F_{X_{N}}\left( x_{N}\right) &=&P\left( X_{N}\leq x_{N}\right)
=\sum_{y_{N}\leq x_{N}}f_{X_{N}}\left( y_{N}\right)
\end{eqnarray*}が成り立つことに注意してください。

離散型の確率変数列が同一分布にしたがうことを分布関数を用いて以下のように表現することもできます。

命題(同一分布にしたがう離散型の確率変数列)
確率空間\(\left( \Omega ,\mathcal{F},P\right) \)に加えて、標本空間\(\Omega \)を定義域として共有する離散型の確率変数列\(\left\{ X_{n}\right\} \)が与えられているものとする。自然数\(N\in \mathbb{N} \)および\(\left\{ X_{n}\right\} \)の項である有限\(N\)個の確率変数\(X_{1},\cdots ,X_{N}\)をそれぞれ任意に選んだときに、\begin{equation*}\forall x\in \mathbb{R} :F_{X_{1}}\left( x\right) =\cdots =F_{X_{N}}\left( x\right)
\end{equation*}が成り立つことは、すなわち、\begin{equation*}
F_{X_{1}}=\cdots =F_{X_{N}}
\end{equation*}が成り立つことは、\(\left\{ X_{n}\right\} \)が同一分布にしたがうための必要十分条件である。ただし、\(F_{X_{1}\cdots X_{N}}:\mathbb{R} ^{N}\rightarrow \mathbb{R} \)は確率ベクトル\(\left(X_{1},\cdots ,X_{N}\right) :\Omega \rightarrow \mathbb{R} ^{N}\)の同時分布関数であり、\(F_{X_{n}}:\mathbb{R} \rightarrow \mathbb{R} \ \left( n=1,\cdots ,N\right) \)は個々の確率変数\(X_{n}:\Omega \rightarrow \mathbb{R} \)の周辺分布である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

 

演習問題

問題(同一分布にしたがう確率変数列)
「サイコロを繰り返し投げて出た目を観察する」という試行の個々の標本点は、\begin{equation*}
\left( 3,1,4,1,\cdots \right)
\end{equation*}のような\(1\)から\(6\)までの整数から構成される無限列として表されます。\(n\)回目に出た目を、\begin{equation*}\omega _{n}\in \left\{ 1,2,3,4,5,6\right\}
\end{equation*}と表記するのであれば、それぞれの標本点を、\begin{equation*}
\omega =\left( \omega _{1},\omega _{2},\cdots \right)
\end{equation*}と定式化できます。この試行の標本空間は、\begin{equation*}
\Omega =\left\{ 1,2,3,4,5,6\right\} ^{\mathbb{N} }
\end{equation*}です。自然数\(n\in \mathbb{N} \)を任意に選んだ上で、それぞれの標本点\(\omega \in \Omega \)に対して、\begin{eqnarray*}X_{n}\left( \omega \right) &=&n\text{回目に出た目} \\
&=&\omega _{n}
\end{eqnarray*}を定める確率変数\begin{equation*}
X_{n}:\Omega \rightarrow \mathbb{R} \end{equation*}を定義します。確率変数列\(\left\{ X_{n}\right\} \)が独立であることを示してください。ただし、すべての標本点は等しい確率で起こるものとします。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(同一分布にしたがわない確率変数列)
「コインを無限回投げる」という試行の個々の標本点は、\begin{equation*}
\left( \text{表},\text{裏},\text{裏},\text{表},\cdots \right)
\end{equation*}のような「表」と「裏」から構成される無限列として表されます。\(n\)回目のコイン投げの結果を、\begin{equation*}\omega _{n}\in \left\{ \text{表},\text{裏}\right\}
\end{equation*}と表記するのであれば、それぞれの標本点を、\begin{equation*}
\omega =\left( \omega _{1},\omega _{2},\cdots \right)
\end{equation*}と定式化できます。この試行の標本空間は、\begin{equation*}
\Omega =\left\{ \text{表},\text{裏}\right\} ^{\mathbb{N} }
\end{equation*}です。自然数\(n\in \mathbb{N} \)を任意に選んだ上で、それぞれの標本点\(\omega \in \Omega \)に対して、\begin{eqnarray*}X_{n}\left( \omega \right) &=&n\text{回目までに表が出た合計回数} \\
&=&\sum_{i=1}^{n}X_{i}\left( \omega \right)
\end{eqnarray*}を定める確率変数\begin{equation*}
X_{n}:\Omega \rightarrow \mathbb{R} \end{equation*}を定義します。確率変数列\(\left\{ X_{n}\right\} \)が独立ではないことを示してください。ただし、すべての標本点は等しい確率で起こるものとします。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

Mailで保存
Xで共有

質問とコメント

プレミアム会員専用コンテンツです

会員登録

有料のプレミアム会員であれば、質問やコメントの投稿と閲覧、プレミアムコンテンツ(命題の証明や演習問題とその解答)へのアクセスなどが可能になります。

ワイズのユーザーは年齢・性別・学歴・社会的立場などとは関係なく「学ぶ人」として対等であり、お互いを人格として尊重することが求められます。ユーザーが快適かつ安心して「学ぶ」ことに集中できる環境を整備するため、広告やスパム投稿、他のユーザーを貶めたり威圧する発言、学んでいる内容とは関係のない不毛な議論などはブロックすることになっています。詳細はガイドラインをご覧ください。

誤字脱字、リンク切れ、内容の誤りを発見した場合にはコメントに投稿するのではなく、以下のフォームからご連絡をお願い致します。

プレミアム会員専用コンテンツです
ログイン】【会員登録