WIIS

離散型の確率分布

同一分布にしたがう2つの離散型確率変数

目次

Mailで保存
Xで共有

同一分布にしたがう2つの確率変数

確率空間\(\left( \Omega ,\mathcal{F},P\right) \)に加えて確率変数\begin{equation*}X:\Omega \rightarrow \mathbb{R} \end{equation*}が与えられているものとします。ボレル集合\(A\in \mathcal{B}\left( \mathbb{R} \right) \)に対して「\(X\)の実現値が\(A\)に属する」という事象の確率は、\begin{equation*}P\left( A\in X\right) =P\left( \left\{ \omega \in \Omega \ |\ X\left( \omega
\right) \in A\right\} \right)
\end{equation*}と定まります。任意の集合\(A\in \mathcal{B}\left( \mathbb{R} \right) \)に対して確率\(P\left( X\in A\right) \)が明らかになっている場合、そのような情報の集まりを\(X\)の確率分布と呼びます。

確率空間\(\left( \Omega ,\mathcal{F},P\right) \)に加えて2つの確率変数\begin{eqnarray*}X &:&\Omega \rightarrow \mathbb{R} \\
Y &:&\Omega \rightarrow \mathbb{R} \end{eqnarray*}が与えられているものとします。ボレル集合\(A\in \mathcal{B}\left( \mathbb{R} \right) \)を任意に選んだとき、\(X\)の実現値が\(A\)に属する確率と\(Y\)の実現値が\(A\)に属する確率が常に一致する場合には、つまり、\begin{equation*}\forall A\in \mathcal{B}\left( \mathbb{R} \right) :P\left( X\in A\right) =P\left( Y\in A\right)
\end{equation*}が成り立つ場合には、\(X\)と\(Y\)は同一の確率分布を持っていると言えます。そこでこの場合、\(X\)と\(Y\)は同一分布にしたがう(identically distributed)と言います。

 

同一分布にしたがう2つの離散型確率変数

確率空間\(\left( \Omega ,\mathcal{F},P\right) \)が与えられている状況において、離散型の同時確率変数\(\left( X,Y\right):\Omega \rightarrow \mathbb{R} ^{2}\)の同時確率分布が同時確率質量関数\begin{equation*}f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \end{equation*}によって記述されているものとします。つまり、同時確率変数\(\left( X,Y\right) \)の実現値がベクトル\(\left( x,y\right) \in \mathbb{R} ^{2}\)と一致する確率が、\begin{equation*}P\left( X=x\wedge Y=y\right) =f_{XY}\left( x,y\right)
\end{equation*}であり、同時確率変数\(\left( X,Y\right) \)の実現値が集合\(E\in \mathcal{B}\left( \mathbb{R} ^{2}\right) \)に属する確率が、\begin{equation*}P\left( \left( X,Y\right) \in E\right) =\sum_{\left( x,y\right) \in
A}f_{XY}\left( x,y\right)
\end{equation*}であるということです。

同時確率質量関数\(f_{XY}\)を周辺化することにより個々の確率変数\(X,Y:\Omega \rightarrow \mathbb{R} \)の周辺確率分布を描写する周辺確率質量関数\begin{eqnarray*}f_{X} &:&\mathbb{R} \rightarrow \mathbb{R} \\
f_{Y} &:&\mathbb{R} \rightarrow \mathbb{R} \end{eqnarray*}が得られます。周辺確率質量関数の定義より、集合\(A,B\in \mathcal{B}\left( \mathbb{R} \right) \)を任意に選んだとき、\begin{eqnarray}P\left( X\in A\right) &=&\sum_{x\in A}f_{X}\left( x\right) \quad \cdots (1) \\
P\left( Y\in B\right) &=&\sum_{y\in B}f_{Y}\left( y\right) \quad \cdots (2)
\end{eqnarray}が成り立ちます。

確率関数\(X,Y\)が同一分布にしたがうことは、\begin{equation*}\forall A\in \mathcal{B}\left( \mathbb{R} \right) :P\left( X\in A\right) =P\left( Y\in A\right)
\end{equation*}が成り立つことを意味しますが、\(\left( 1\right) ,\left(2\right) \)を用いると、これを、\begin{equation*}\forall A\in \mathcal{B}\left( \mathbb{R} \right) :\sum_{x\in A}f_{X}\left( x\right) =\sum_{y\in A}f_{Y}\left(
y\right)
\end{equation*}と表現できます。そこで、以上の条件によって離散型の確率変数\(X,Y\)が同一分布にしたがうことの定義とします。

離散型確率変数が同一分布にしたがうことを以下のように表現することもできます。

命題(同一分布にしたがう離散型確率変数)
確率空間\(\left( \Omega ,\mathcal{F},P\right) \)に加えて離散型の確率変数\(X,Y:\Omega \rightarrow \mathbb{R} \)と同時確率変数\(\left( X,Y\right):\Omega \rightarrow \mathbb{R} ^{2}\)が与えられているものとする。\(\left( X,Y\right) \)の同時確率質量関数が\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)であり、確率変数\(X,Y\)の周辺確率質量関数が\(f_{X},f_{Y}:\mathbb{R} \rightarrow \mathbb{R} \)であるものとする。このとき、以下の条件\begin{equation*}\forall x\in \mathbb{R} :f_{X}\left( x\right) =f_{Y}\left( x\right)
\end{equation*}が成り立つことは、すなわち、\begin{equation*}
f_{X}=f_{Y}
\end{equation*}が成り立つことは、\(X\)と\(Y\)が同一分布にしたがうための必要十分条件である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(同一分布にしたがう離散型確率変数)
「コインを2回投げる」という試行を行います。\(i\ \left( =1,2\right) \)回目に出た面を\(\omega _{i}\)で表記するのであれば、問題としている試行の標本空間は、\begin{equation*}\Omega =\left\{ \left( \omega _{1},\omega _{2}\right) \ |\ \forall i\in
\left\{ 1,2\right\} :\omega _{i}\in \left\{ \text{表},\text{裏}\right\} \right\}
\end{equation*}です。事象空間を、\begin{equation*}
\mathcal{F}=2^{\Omega }
\end{equation*}と定めた上で、確率測度\(P:\mathcal{F}\rightarrow \mathbb{R} \)を、事象\(A\in \mathcal{F}\)に対して、\begin{equation*}P\left( A\right) =\frac{\left\vert A\right\vert }{\left\vert \Omega
\right\vert }
\end{equation*}を満たすものとして定義します。これらの組\begin{equation*}
\left( \Omega ,\mathcal{F},P\right)
\end{equation*}は確率空間です。各回において表が出た場合にはポイント\(1\)を得て、裏が出た場合にはポイント\(1\)を失うものとします。「1回目に得るポイント」特定する確率変数が\(X:\Omega \rightarrow \mathbb{R} \)であり、「2回目に得るポイント」特定する確率変数が\(Y:\Omega \rightarrow \mathbb{R} \)である場合、同時確率変数\(\left( X,Y\right) :\Omega \rightarrow \mathbb{R} ^{2}\)はそれぞれの標本点\(\left( \omega _{1},\omega _{2}\right) \in \Omega \)に対して、\begin{eqnarray*}\left( X,Y\right) \left( \omega _{1},\omega _{2}\right) &=&\left( X\left(
\omega _{1},\omega _{2}\right) ,Y\left( \omega _{1},\omega _{2}\right)
\right) \\
&=&\left\{
\begin{array}{cc}
\left( 1,1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{表},\text{表}\right) \right) \\
\left( 1,-1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{表},\text{裏}\right) \right) \\
\left( -1,1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{裏},\text{表}\right) \right) \\
\left( -1,-1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{裏},\text{裏}\right) \right)
\end{array}\right.
\end{eqnarray*}を定めます。\(x,y\in \mathbb{R} \)を任意に選んだとき、\begin{eqnarray*}&&\left\{ \left( \omega _{1},\omega _{2}\right) \in \Omega \ |\ X\left(
\omega _{1},\omega _{2}\right) \leq x\wedge Y\left( \omega _{1},\omega
_{2}\right) \leq y\right\} \\
&=&\left\{
\begin{array}{cl}
\phi & \left( if\ x<-1\vee y<-1\right) \\
\left\{ \left( \text{裏},\text{裏}\right) \right\} & \left( if\
-1\leq x<1\wedge -1\leq y<1\right) \\
\left\{ \left( \text{裏},\text{裏}\right) ,\left( \text{裏},\text{表}\right) \right\} & \left( if\ -1\leq x<1\wedge y\geq
1\right) \\
\left\{ \left( \text{裏},\text{裏}\right) ,\left( \text{表},\text{裏}\right) \right\} & \left( if\ x\geq 1\wedge -1\leq
y<1\right) \\
\Omega & \left( if\ x\geq 1\wedge y\geq 1\right)
\end{array}\right. \\
&\in &\mathcal{F}
\end{eqnarray*}が成り立つため\(\left( X,Y\right) \)は同時確率変数です。加えて、\(\left( X,Y\right) \)の値域は、\begin{equation*}\left( X,Y\right) \left( \Omega \right) =\left\{ \left( 1,1\right) ,\left(
1,-1\right) ,\left( -1,1\right) ,\left( -1,-1\right) \right\}
\end{equation*}ですが、これは有限集合であるため、\(\left(X,Y\right) \)は離散型の同時確率変数です。同時確率質量関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
\frac{1}{4} & \left( if\ \left( x,y\right) \in \left( X,Y\right) \left(
\Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right.
\end{equation*}を定めます。確率変数\(X\)の値域は、\begin{equation*}X\left( \Omega \right) =\left\{ 1,-1\right\}
\end{equation*}であり、確率質量変数\(f_{X}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation}f_{X}\left( x\right) =\left\{
\begin{array}{cl}
\frac{1}{2} & \left( if\ x\in X\left( \Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (1)
\end{equation}を定めます。確率変数\(Y\)の値域は、\begin{equation*}Y\left( \Omega \right) =\left\{ 1,-1\right\}
\end{equation*}であり、確率質量変数\(f_{Y}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(y\in \mathbb{R} \)に対して、\begin{equation}f_{Y}\left( y\right) =\left\{
\begin{array}{cl}
\frac{1}{2} & \left( if\ y\in Y\left( \Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (2)
\end{equation}を定めます。\(x\in \mathbb{R} \)を任意に選んだとき、\(\left( 1\right) ,\left( 2\right) \)より、\begin{equation*}f_{X}\left( x\right) =f_{Y}\left( x\right)
\end{equation*}が成り立つため、\(X\)と\(Y\)は同一分布にしたがうことが明らかになりました。

確率変数どうしは同一分布にしたがうとは限りません。以下の例より明らかです。

例(同一分布にしたがわない確率変数)
「コインを2回投げる」という試行を行います。\(i\ \left( =1,2\right) \)回目に出た面を\(\omega _{i}\)で表記するのであれば、問題としている試行の標本空間は、\begin{equation*}\Omega =\left\{ \left( \omega _{1},\omega _{2}\right) \ |\ \forall i\in
\left\{ 1,2\right\} :\omega _{i}\in \left\{ \text{表},\text{裏}\right\} \right\}
\end{equation*}です。事象空間を、\begin{equation*}
\mathcal{F}=2^{\Omega }
\end{equation*}と定めた上で、確率測度\(P:\mathcal{F}\rightarrow \mathbb{R} \)を、事象\(A\in \mathcal{F}\)に対して、\begin{equation*}P\left( A\right) =\frac{\left\vert A\right\vert }{\left\vert \Omega
\right\vert }
\end{equation*}を満たすものとして定義します。これらの組\begin{equation*}
\left( \Omega ,\mathcal{F},P\right)
\end{equation*}は確率空間です。「1投目に表が出る回数」特定する確率変数が\(X:\Omega \rightarrow \mathbb{R} \)であり、「2投において表が出る合計回数」特定する確率変数が\(Y:\Omega \rightarrow \mathbb{R} \)である場合、同時確率変数\(\left( X,Y\right) :\Omega \rightarrow \mathbb{R} ^{2}\)はそれぞれの標本点\(\left( \omega _{1},\omega _{2}\right) \in \Omega \)に対して、\begin{eqnarray*}\left( X,Y\right) \left( \omega _{1},\omega _{2}\right) &=&\left( X\left(
\omega _{1},\omega _{2}\right) ,Y\left( \omega _{1},\omega _{2}\right)
\right) \quad \because \left( X,Y\right) \text{の定義} \\
&=&\left\{
\begin{array}{cc}
\left( 1,2\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{表},\text{表}\right) \right) \\
\left( 1,1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{表},\text{裏}\right) \right) \\
\left( 0,1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{裏},\text{表}\right) \right) \\
\left( 0,0\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{裏},\text{裏}\right) \right)
\end{array}\right. \quad \because X,Y\text{の定義}
\end{eqnarray*}を定めます。\(x,y\in \mathbb{R} \)を任意に選んだとき、\begin{eqnarray*}&&\left\{ \left( \omega _{1},\omega _{2}\right) \in \Omega \ |\ X\left(
\omega _{1},\omega _{2}\right) \leq x\wedge Y\left( \omega _{1},\omega
_{2}\right) \leq y\right\} \\
&=&\left\{
\begin{array}{cl}
\phi & \left( if\ x<0\vee y<0\right) \\
\left\{ \left( 0,0\right) \right\} & \left( if\ 0\leq x<1\wedge 0\leq
y<1\right) \\
\left\{ \left( 0,0\right) ,\left( 0,1\right) \right\} & \left( if\ 0\leq
x<1\wedge 1\leq y<2\right) \\
\vdots & \\
\Omega & \left( if\ x\geq 1\wedge y\geq 2\right)
\end{array}\right. \\
&\in &\mathcal{F}
\end{eqnarray*}が成り立つため\(\left( X,Y\right) \)は同時確率変数です。加えて、\(\left( X,Y\right) \)の値域は、\begin{equation*}\left( X,Y\right) \left( \Omega \right) =\left\{ \left( 1,2\right) ,\left(
1,1\right) ,\left( 0,1\right) ,\left( 0,0\right) \right\}
\end{equation*}ですが、これは有限集合であるため、\(\left(X,Y\right) \)は離散型の同時確率変数です。同時確率質量関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
\frac{1}{4} & \left( if\ \left( x,y\right) \in \left( X,Y\right) \left(
\Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right.
\end{equation*}を定めます。確率変数\(X\)の値域は、\begin{equation*}X\left( \Omega \right) =\left\{ 0,1\right\}
\end{equation*}であり、確率質量変数\(f_{X}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation}f_{X}\left( x\right) =\left\{
\begin{array}{cl}
\frac{1}{2} & \left( if\ x\in X\left( \Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (1)
\end{equation}を定めます。確率変数\(Y\)の値域は、\begin{equation*}Y\left( \Omega \right) =\left\{ 0,1,2\right\}
\end{equation*}であり、確率質量変数\(f_{Y}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(y\in \mathbb{R} \)に対して、\begin{equation}f_{Y}\left( y\right) =\left\{
\begin{array}{cl}
\frac{1}{4} & \left( if\ y=0,2\right) \\
\frac{1}{2} & \left( if\ y=1\right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (2)
\end{equation}を定めます。点\(2\in \mathbb{R} \)に注目したとき、\(\left(1\right) ,\left( 2\right) \)より、\begin{eqnarray*}f_{X}\left( 2\right) &=&0 \\
f_{Y}\left( 2\right) &=&\frac{1}{4}
\end{eqnarray*}であり、したがって、\begin{equation*}
f_{X}\left( 2\right) \not=f_{Y}\left( 2\right)
\end{equation*}が成り立つため、\(X\)と\(Y\)は同一分布にしたがわないことが明らかになりました。

 

分布関数を用いた離散型確率変数が同一分布にしたがうことの表現

確率変数が同一分布にしたがうことを分布関数を用いて表現することもできます。具体的には以下の通りです。

命題(離散型確率変数の独立性)
確率空間\(\left( \Omega ,\mathcal{F},P\right) \)に加えて離散型の確率変数\(X,Y:\Omega \rightarrow \mathbb{R} \)と同時確率変数\(\left( X,Y\right):\Omega \rightarrow \mathbb{R} ^{2}\)が与えられているものとする。\(\left( X,Y\right) \)の同時分布関数が\(F_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)であり、\(X,Y\)の周辺分布関数が\(F_{X},F_{Y}:\mathbb{R} \rightarrow \mathbb{R} \)であるものとする。このとき、以下の条件\begin{equation*}\forall x\in \mathbb{R} :F_{X}\left( x\right) =F_{Y}\left( x\right)
\end{equation*}が成り立つことは、\(X\)と\(Y\)が同一分布にしたがうための必要十分条件である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(同一分布にしたがう離散型確率変数)
同時確率変数\(\left( X,Y\right) :\Omega\rightarrow \mathbb{R} ^{2}\)の値域が、\begin{equation*}\left( X,Y\right) \left( \Omega \right) =\left\{ \left( 1,1\right) ,\left(
1,-1\right) ,\left( -1,1\right) ,\left( -1,-1\right) \right\}
\end{equation*}であるとともに、同時分布関数\(F_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}F_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
0 & \left( if\ x<-1\vee y<-1\right) \\
\frac{1}{4} & \left( if\ -1\leq x<1\wedge -1\leq y<1\right) \\
\frac{1}{2} & \left( if\ -1\leq x<1\wedge y\geq 1\right) \\
\frac{1}{2} & \left( if\ x\geq 1\wedge -1\leq y<1\right) \\
1 & \left( if\ x\geq 1\wedge y\geq 1\right)\end{array}\right.
\end{equation*}を定めるものとします。確率変数\(X:\Omega \rightarrow \mathbb{R} \)の値域は、\begin{equation*}X\left( \Omega \right) =\left\{ 1,-1\right\}
\end{equation*}であり、周辺分布関数\(F_{X}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation}F_{X}\left( x\right) =\left\{
\begin{array}{cl}
0 & \left( if\ x<-1\right) \\
\frac{1}{2} & \left( if\ -1\leq x<1\right) \\
1 & \left( if\ x\geq 1\right)\end{array}\right. \quad \cdots (1)
\end{equation}を定めます。確率変数\(Y:\Omega \rightarrow \mathbb{R} \)の値域は、\begin{equation*}Y\left( \Omega \right) =\left\{ 1,-1\right\}
\end{equation*}であり、周辺分布関数\(F_{Y}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(y\in \mathbb{R} \)に対して、\begin{equation}F_{Y}\left( y\right) =\left\{
\begin{array}{cl}
0 & \left( if\ y<-1\right) \\
\frac{1}{2} & \left( if\ -1\leq y<1\right) \\
1 & \left( if\ y\geq 1\right)\end{array}\right. \quad \cdots (2)
\end{equation}を定めます。\(x\in \mathbb{R} \)を任意に選んだとき、\(\left( 1\right) ,\left( 2\right) \)より、\begin{equation*}F_{X}\left( x\right) =F_{Y}\left( x\right)
\end{equation*}が成り立つため、\(X\)と\(Y \)は同一分布にしたがうことが明らかになりました。

 

演習問題

問題(同一分布にしたがう確率変数)
離散型の同時確率変数\(\left( X,Y\right) :\Omega \rightarrow \mathbb{R} ^{2}\)の値域が、\begin{equation*}\left( X,Y\right) \left( \Omega \right) =\left\{ \left( 0,0\right) ,\left(
0,1\right) ,\left( 1,0\right) ,\left( 1,1\right) \right\}
\end{equation*}であるとともに、\(\left(X,Y\right) \)の同時確率関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)がそれぞれの\(\left( x,y\right) \in\left( X,Y\right) \left( \Omega \right) \)に対して定める値が、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
\frac{1}{4} & \left( if\ \left( x,y\right) =\left( 0,0\right) \right) \\
\frac{1}{4} & \left( if\ \left( x,y\right) =\left( 0,1\right) \right) \\
\frac{1}{4} & \left( if\ \left( x,y\right) =\left( 1,0\right) \right) \\
\frac{1}{4} & \left( if\ \left( x,y\right) =\left( 1,1\right) \right) \\
0 & \left( otherwise\right)\end{array}\right.
\end{equation*}であるものとします。\(X\)と\(Y\)は同一分布にしたがうでしょうか。議論してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(同一分布にしたがう確率変数)
離散型の同時確率変数\(\left( X,Y\right) :\Omega \rightarrow \mathbb{R} ^{2}\)の値域が、\begin{equation*}\left( X,Y\right) \left( \Omega \right) =\left\{ \left( x,y\right) \in \mathbb{R} ^{2}\ |\ x\in \left\{ 0,1,2\right\} \wedge y\in \left\{ 0,1,2,3\right\}
\right\}
\end{equation*}であるとともに、\(\left(X,Y\right) \)の同時確率関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
\frac{x+y}{30} & \left( if\ \left( x,y\right) \in \left( X,Y\right) \left(
\Omega \right) \right) \\
0 & \left( if\ \left( x,y\right) \not\in \left( X,Y\right) \left( \Omega
\right) \right)\end{array}\right.
\end{equation*}を定めるものとします。\(X\)と\(Y\)は同一分布にしたがうでしょうか。議論してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(同一分布にしたがう確率変数)
離散型の同時確率変数\(\left( X,Y\right) :\Omega \rightarrow \mathbb{R} ^{2}\)の値域が、\begin{equation*}\left( X,Y\right) \left( \Omega \right) =\left\{ \left( x,y\right) \in \mathbb{R} ^{2}\ |\ x\in \left\{ 1,2,3\right\} \wedge y\in \left\{ 1,2,3\right\}
\right\}
\end{equation*}であるとともに、その同時確率関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cc}
\frac{x+y}{36} & \left( if\ \left( x,y\right) \in \left( X,Y\right) \left(
\Omega \right) \right) \\
0 & \left( if\ \left( x,y\right) \not\in \left( X,Y\right) \left( \Omega
\right) \right)\end{array}\right.
\end{equation*}を定めるものとします。\(X\)と\(Y\)は同一分布にしたがうでしょうか。議論してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

Mailで保存
Xで共有

質問とコメント

プレミアム会員専用コンテンツです

会員登録

有料のプレミアム会員であれば、質問やコメントの投稿と閲覧、プレミアムコンテンツ(命題の証明や演習問題とその解答)へのアクセスなどが可能になります。

ワイズのユーザーは年齢・性別・学歴・社会的立場などとは関係なく「学ぶ人」として対等であり、お互いを人格として尊重することが求められます。ユーザーが快適かつ安心して「学ぶ」ことに集中できる環境を整備するため、広告やスパム投稿、他のユーザーを貶めたり威圧する発言、学んでいる内容とは関係のない不毛な議論などはブロックすることになっています。詳細はガイドラインをご覧ください。

誤字脱字、リンク切れ、内容の誤りを発見した場合にはコメントに投稿するのではなく、以下のフォームからご連絡をお願い致します。

プレミアム会員専用コンテンツです
ログイン】【会員登録