同一分布にしたがう2つの確率変数
問題としている試行に関する確率空間\(\left(\Omega ,\mathcal{F},P\right) \)に加えて確率変数\begin{equation*}X:\Omega \rightarrow \mathbb{R} \end{equation*}が与えられている場合、「確率変数\(X\)の値が集合\(A\subset \mathbb{R} \)に属する」という事象は、\(X\left( \omega \right) \in A\)を満たす標本点\(\omega \)からなる集合\begin{equation*}\left\{ \omega \in \Omega \ |\ X\left( \omega \right) \in A\right\}
\end{equation*}として表現されるため、「確率変数\(X\)の値が集合\(A\)に属する」という事象が起こる確率は、\begin{equation*}P\left( X\in A\right) =P\left( \left\{ \omega \in \Omega \ |\ X\left( \omega
\right) \in A\right\} \right)
\end{equation*}となります。任意の集合\(A\subset \mathbb{R} \)に対して、確率変数\(X\)の値が\(A\)に属する確率\(P\left( X\in A\right) \)が明らかになっている場合、そのような情報の集まりを確率変数\(X\)の確率分布と呼びました。
問題としている試行に関する同時確率変数\begin{equation*}
\left( X,Y\right) :\Omega \rightarrow \mathbb{R} ^{2}
\end{equation*}が与えられている状況を想定します。集合\(A\subset \mathbb{R} \)を選んだとき、「確率変数\(X\)の値が集合\(A\)に属する確率」は、\begin{equation*}P\left( X\in A\right) =P\left( \left\{ \omega \in \Omega \ |\ X\left( \omega
\right) \in A\right\} \right)
\end{equation*}であり、「確率変数\(Y\)の値が集合\(A\)に属する確率」は、\begin{equation*}P\left( Y\in A\right) =P\left( \left\{ \omega \in \Omega \ |\ Y\left( \omega
\right) \in A\right\} \right)
\end{equation*}です。2つの確率変数\(X,Y:\Omega \rightarrow \mathbb{R} \)が同一の確率分布にしたがうこととは、どのような集合\(A\subset \mathbb{R} \)を選んだ場合でも、「確率変数\(X\)の値が集合\(A\)に属する確率」と「確率変数\(Y\)の値が集合\(A\)に属する確率」が一致すること、すなわち、\begin{equation*}\forall A\subset \mathbb{R} :P\left( X\in A\right) =P\left( Y\in A\right)
\end{equation*}が成り立つこととして定義されます。\(X\)と\(Y\)が同一の確率分布にしたがうことを同一分布にしたがう(identically distributed)と言うこともできます。
同一分布にしたがう2つの離散型確率変数
確率空間\(\left( \Omega ,\mathcal{F},P\right) \)が与えられている状況において、離散型の同時確率変数\(\left( X,Y\right):\Omega \rightarrow \mathbb{R} ^{2}\)の同時確率分布が同時確率質量関数\begin{equation*}f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \end{equation*}によって記述されているものとします。つまり、同時確率変数\(\left( X,Y\right) \)の値がベクトル\(\left( x,y\right) \in \mathbb{R} ^{2}\)と一致する確率は、\begin{equation*}P\left( \left( X,Y\right) =\left( x,y\right) \right) =f_{XY}\left(
x,y\right)
\end{equation*}であり、同時確率変数\(\left( X,Y\right) \)の値が集合\(A\times B\subset \mathbb{R} ^{2}\)に属する確率は、\begin{equation*}P\left( \left( X,Y\right) \in A\times B\right) =\sum_{\left( x,y\right) \in
A\times B}f_{XY}\left( x,y\right)
\end{equation*}であるということです。
同時確率質量関数\(f_{XY}\)を周辺化することにより個々の確率変数\(X,Y:\Omega \rightarrow \mathbb{R} \)の周辺確率分布を描写する周辺確率質量関数\begin{eqnarray*}f_{X} &:&\mathbb{R} \rightarrow \mathbb{R} \\
f_{Y} &:&\mathbb{R} \rightarrow \mathbb{R} \end{eqnarray*}が得られます。周辺確率質量関数の定義より、集合\(A,B\subset \mathbb{R} \)を任意に選んだとき、\begin{eqnarray}P\left( X\in A\right) &=&\sum_{x\in A}f_{X}\left( x\right) \quad \cdots (1) \\
P\left( Y\in B\right) &=&\sum_{y\in B}f_{Y}\left( y\right) \quad \cdots (2)
\end{eqnarray}という関係が成り立つことに注意してください。
先に定義したように、確率関数\(X,Y\)が同一分布にしたがうことは、\begin{equation*}\forall A\subset \mathbb{R} :P\left( X\in A\right) =P\left( Y\in A\right)
\end{equation*}が成り立つことを意味しますが、\(\left( 1\right) ,\left(2\right) \)を用いると、これを、\begin{equation*}\forall A\subset \mathbb{R} :\sum_{x\in A}f_{X}\left( x\right) =\sum_{y\in A}f_{Y}\left( y\right)
\end{equation*}と表現できます。そこで、以上の条件によって離散型の確率変数\(X,Y\)が同一分布にしたがうことの定義とします。
離散型確率変数が同一分布にしたがうことを以下のように表現することもできます。
\end{equation*}が成り立つことは、すなわち、\begin{equation*}
f_{X}=f_{Y}
\end{equation*}が成り立つことは、\(X\)と\(Y\)が同一分布にしたがうための必要十分条件である。
\left\{ 1,2\right\} :\omega _{i}\in \left\{ \text{表},\text{裏}\right\} \right\}
\end{equation*}です。各回において表が出た場合にはポイント\(1\)を得て、裏が出た場合にはポイント\(1\)を失うものとします。すべての標本点は同じ確率で起こり得るものとします。「1回目に得るポイント」と「2回目に得るポイント」の関係性を分析したい場合には、それらを特定する2つの確率変数の同時確率変数を利用することになります。具体的には、「1回目に得るポイント」を特定する確率変数\(X:\Omega\rightarrow \mathbb{R} \)と「2回目に出るポイント」を特定する確率変数\(Y:\Omega \rightarrow \mathbb{R} \)が与えられたとき、同時確率変数\(\left( X,Y\right) :\Omega\rightarrow \mathbb{R} ^{2}\)がそれぞれの\(\left( \omega_{1},\omega _{2}\right) \in \Omega \)に対して定める値は、\begin{eqnarray*}\left( X,Y\right) \left( \omega _{1},\omega _{2}\right) &=&\left( X\left(
\omega _{1},\omega _{2}\right) ,Y\left( \omega _{1},\omega _{2}\right)
\right) \quad \because \left( X,Y\right) \text{の定義} \\
&=&\left\{
\begin{array}{cc}
\left( 1,1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{表},\text{表}\right) \right) \\
\left( 1,-1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{表},\text{裏}\right) \right) \\
\left( -1,1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{裏},\text{表}\right) \right) \\
\left( -1,-1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{裏},\text{裏}\right) \right)
\end{array}\right. \quad \because X,Y\text{の定義}
\end{eqnarray*}となります。\(\left( X,Y\right) \)の値域は、\begin{equation*}\left( X,Y\right) \left( \Omega \right) =\left\{ \left( 1,1\right) ,\left(
1,-1\right) ,\left( -1,1\right) ,\left( -1,-1\right) \right\}
\end{equation*}です。標本空間\(\Omega \)には\(2^{2}=4\)個の標本点が属しますが、仮定よりこれらはいずれも同じ程度の確かさで起こるため、同時確率質量関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
\frac{1}{4} & \left( if\ \left( x,y\right) \in \left( X,Y\right) \left(
\Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right.
\end{equation*}を定めます。確率変数\(X\)の値域は、\begin{equation*}X\left( \Omega \right) =\left\{ 1,-1\right\}
\end{equation*}であり、確率質量変数\(f_{X}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation}f_{X}\left( x\right) =\left\{
\begin{array}{cl}
\frac{1}{2} & \left( if\ x\in X\left( \Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (1)
\end{equation}を定めます。確率変数\(Y\)の値域は、\begin{equation*}Y\left( \Omega \right) =\left\{ 1,-1\right\}
\end{equation*}であり、確率質量変数\(f_{Y}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(y\in \mathbb{R} \)に対して、\begin{equation}f_{Y}\left( y\right) =\left\{
\begin{array}{cl}
\frac{1}{2} & \left( if\ y\in Y\left( \Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (2)
\end{equation}を定めます。\(x\in \mathbb{R} \)を任意に選んだとき、\(\left( 1\right) ,\left( 2\right) \)より、\begin{equation*}f_{X}\left( x\right) =f_{Y}\left( x\right)
\end{equation*}が成り立つため、\(X\)と\(Y\)は同一分布にしたがうことが明らかになりました。
確率変数どうしは同一分布にしたがうとは限りません。以下の例より明らかです。
\left\{ 1,2\right\} :\omega _{i}\in \left\{ \text{表},\text{裏}\right\} \right\}
\end{equation*}です。すべての標本点は同じ確率で起こり得るものとします。「1投目に表が出る回数」と「2投において表が出る合計回数」の関係性を分析したい場合には、それらを特定する2つの確率変数の同時確率変数を利用することになります。具体的には、「1回目に得るポイント」を特定する確率変数\(X:\Omega \rightarrow \mathbb{R} \)と「2投において表が出る合計回数」を特定する確率変数\(Y:\Omega\rightarrow \mathbb{R} \)が与えられたとき、同時確率変数\(\left( X,Y\right) :\Omega\rightarrow \mathbb{R} ^{2}\)がそれぞれの\(\left( \omega_{1},\omega _{2}\right) \in \Omega \)に対して定める値は、\begin{eqnarray*}\left( X,Y\right) \left( \omega _{1},\omega _{2}\right) &=&\left( X\left(
\omega _{1},\omega _{2}\right) ,Y\left( \omega _{1},\omega _{2}\right)
\right) \quad \because \left( X,Y\right) \text{の定義} \\
&=&\left\{
\begin{array}{cc}
\left( 1,2\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{表},\text{表}\right) \right) \\
\left( 1,1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{表},\text{裏}\right) \right) \\
\left( 0,1\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{裏},\text{表}\right) \right) \\
\left( 0,0\right) & \left( if\ \left( \omega _{1},\omega _{2}\right)
=\left( \text{裏},\text{裏}\right) \right)
\end{array}\right. \quad \because X,Y\text{の定義}
\end{eqnarray*}となります。\(\left( X,Y\right) \)の値域は、\begin{equation*}\left( X,Y\right) \left( \Omega \right) =\left\{ \left( 1,2\right) ,\left(
1,1\right) ,\left( -1,1\right) ,\left( -1,0\right) \right\}
\end{equation*}です。標本空間\(\Omega \)には\(2^{2}=4\)個の標本点が属しますが、仮定よりこれらはいずれも同じ程度の確かさで起こるため、同時確率質量関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
\frac{1}{4} & \left( if\ \left( x,y\right) \in \left( X,Y\right) \left(
\Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right.
\end{equation*}を定めます。確率変数\(X\)の値域は、\begin{equation*}X\left( \Omega \right) =\left\{ 0,1\right\}
\end{equation*}であり、確率質量変数\(f_{X}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation}f_{X}\left( x\right) =\left\{
\begin{array}{cl}
\frac{1}{2} & \left( if\ x\in X\left( \Omega \right) \right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (1)
\end{equation}を定めます。確率変数\(Y\)の値域は、\begin{equation*}Y\left( \Omega \right) =\left\{ 0,1,2\right\}
\end{equation*}であり、確率質量変数\(f_{Y}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(y\in \mathbb{R} \)に対して、\begin{equation}f_{Y}\left( y\right) =\left\{
\begin{array}{cl}
\frac{1}{4} & \left( if\ y=0,2\right) \\
\frac{1}{2} & \left( if\ y=1\right) \\
0 & \left( otherwise\right)
\end{array}\right. \quad \cdots (2)
\end{equation}を定めます。点\(2\in \mathbb{R} \)に注目したとき、\(\left(1\right) ,\left( 2\right) \)より、\begin{eqnarray*}f_{X}\left( 2\right) &=&0 \\
f_{Y}\left( 2\right) &=&\frac{1}{4}
\end{eqnarray*}であり、したがって、\begin{equation*}
f_{X}\left( 2\right) \not=f_{Y}\left( 2\right)
\end{equation*}が成り立つため、\(X\)と\(Y\)は同一分布にしたがわないことが明らかになりました。
分布関数を用いた離散型確率変数が同一分布にしたがうことの表現
確率変数が同一分布にしたがうことを分布関数を用いて表現することもできます。具体的には以下の通りです。
確率空間\(\left( \Omega ,\mathcal{F},P\right) \)が与えられている状況において、離散型の同時確率変数\(\left( X,Y\right):\Omega \rightarrow \mathbb{R} ^{2}\)の同時確率分布が同時分布関数\begin{equation*}F_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \end{equation*}によって記述されているものとします。つまり、同時確率変数\(\left( X,Y\right) \)の値がベクトル\(\left( x,y\right) \in \mathbb{R} ^{2}\)以下である確率は、\begin{equation*}P\left( X\leq x\wedge Y\leq y\right) =F_{XY}\left( x,y\right)
=\sum_{x_{i}\leq x}\sum_{y_{i}\leq y}f_{XY}\left( x_{i},y_{i}\right)
\end{equation*}です。同時分布関数\(F_{XY}\)を周辺化することにより個々の確率変数\(X,Y:\Omega \rightarrow \mathbb{R} \)の周辺確率分布を描写する周辺分布関数\begin{eqnarray*}F_{X} &:&\mathbb{R} \rightarrow \mathbb{R} \\
F_{Y} &:&\mathbb{R} \rightarrow \mathbb{R} \end{eqnarray*}が得られます。周辺分布関数の定義より、点\(x,y\in \mathbb{R} \)を任意に選んだとき、\begin{eqnarray*}F_{X}\left( x\right) &=&P\left( X\leq x\right) =\sum_{x_{i}\leq
x}f_{X}\left( x_{i}\right) \\
F_{Y}\left( y\right) &=&P\left( Y\leq y\right) =\sum_{y_{i}\leq
y}f_{Y}\left( y_{i}\right)
\end{eqnarray*}という関係が成り立つことに注意してください。以上を踏まえたとき、\begin{equation*}
\forall x\in \mathbb{R} :F_{X}\left( x\right) =F_{Y}\left( x\right)
\end{equation*}が成り立つことは、\(X\)と\(Y\)が同一分布にしたがうための必要十分条件になります。
\end{equation*}が成り立つことは、\(X\)と\(Y\)が同一分布にしたがうための必要十分条件である。
1,-1\right) ,\left( -1,1\right) ,\left( -1,-1\right) \right\}
\end{equation*}であるとともに、同時分布関数\(F_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}F_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
0 & \left( if\ x<-1\vee y<-1\right) \\
\frac{1}{4} & \left( if\ -1\leq x<1\wedge -1\leq y<1\right) \\
\frac{1}{2} & \left( if\ -1\leq x<1\wedge y\geq 1\right) \\
\frac{1}{2} & \left( if\ x\geq 1\wedge -1\leq y<1\right) \\
1 & \left( if\ x\geq 1\wedge y\geq 1\right)
\end{array}\right.
\end{equation*}を定めるものとします。確率変数\(X:\Omega \rightarrow \mathbb{R} \)の値域は、\begin{equation*}X\left( \Omega \right) =\left\{ 1,-1\right\}
\end{equation*}であり、周辺分布関数\(F_{X}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation}F_{X}\left( x\right) =\left\{
\begin{array}{cl}
0 & \left( if\ x<-1\right) \\
\frac{1}{2} & \left( if\ -1\leq x<1\right) \\
1 & \left( if\ x\geq 1\right)
\end{array}\right. \quad \cdots (1)
\end{equation}を定めます。確率変数\(Y:\Omega \rightarrow \mathbb{R} \)の値域は、\begin{equation*}Y\left( \Omega \right) =\left\{ 1,-1\right\}
\end{equation*}であり、周辺分布関数\(F_{Y}:\mathbb{R} \rightarrow \mathbb{R} \)はそれぞれの\(y\in \mathbb{R} \)に対して、\begin{equation}F_{Y}\left( y\right) =\left\{
\begin{array}{cl}
0 & \left( if\ y<-1\right) \\
\frac{1}{2} & \left( if\ -1\leq y<1\right) \\
1 & \left( if\ y\geq 1\right)
\end{array}\right. \quad \cdots (2)
\end{equation}を定めます。\(x\in \mathbb{R} \)を任意に選んだとき、\(\left( 1\right) ,\left( 2\right) \)より、\begin{equation*}F_{X}\left( x\right) =F_{Y}\left( x\right)
\end{equation*}が成り立つため、\(X\)と\(Y\)は同一分布にしたがうことが明らかになりました。
演習問題
0,1\right) ,\left( 1,0\right) ,\left( 1,1\right) \right\}
\end{equation*}であるとともに、\(\left(X,Y\right) \)の同時確率関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)がそれぞれの\(\left( x,y\right) \in\left( X,Y\right) \left( \Omega \right) \)に対して定める値が、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
\frac{1}{4} & \left( if\ \left( x,y\right) =\left( 0,0\right) \right) \\
\frac{1}{4} & \left( if\ \left( x,y\right) =\left( 0,1\right) \right) \\
\frac{1}{4} & \left( if\ \left( x,y\right) =\left( 1,0\right) \right) \\
\frac{1}{4} & \left( if\ \left( x,y\right) =\left( 1,1\right) \right) \\
0 & \left( otherwise\right)
\end{array}\right.
\end{equation*}であるものとします。\(X\)と\(Y\)は同一分布にしたがうでしょうか。議論してください。
\right\}
\end{equation*}であるとともに、\(\left(X,Y\right) \)の同時確率関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cl}
\frac{x+y}{30} & \left( if\ \left( x,y\right) \in \left( X,Y\right) \left(
\Omega \right) \right) \\
0 & \left( if\ \left( x,y\right) \not\in \left( X,Y\right) \left( \Omega
\right) \right)
\end{array}\right.
\end{equation*}を定めるものとします。\(X\)と\(Y\)は同一分布にしたがうでしょうか。議論してください。
\right\}
\end{equation*}であるとともに、その同時確率関数\(f_{XY}:\mathbb{R} ^{2}\rightarrow \mathbb{R} \)はそれぞれの\(\left( x,y\right) \in \mathbb{R} ^{2}\)に対して、\begin{equation*}f_{XY}\left( x,y\right) =\left\{
\begin{array}{cc}
\frac{x+y}{36} & \left( if\ \left( x,y\right) \in \left( X,Y\right) \left(
\Omega \right) \right) \\
0 & \left( if\ \left( x,y\right) \not\in \left( X,Y\right) \left( \Omega
\right) \right)
\end{array}\right.
\end{equation*}を定めるものとします。\(X\)と\(Y\)は同一分布にしたがうでしょうか。議論してください。
プレミアム会員専用コンテンツです
【ログイン】【会員登録】