点列コンパクト集合
ユークリッド空間\(\mathbb{R} ^{n}\)の部分集合\(A\)を任意に選びます。その上で、\(A\)の点を項とする点列\(\left\{ x_{v}\right\} \)を任意に選びます。つまり、\begin{equation*}\forall v\in \mathbb{N} :x_{v}\in A
\end{equation*}を満たす点列\(\left\{ x_{v}\right\} \)を任意に選ぶということです。このような任意の点列\(\left\{ x_{v}\right\} \)が\(A\)の点に収束する部分列を持つならば、すなわち、\begin{equation*}\lim_{v\rightarrow \infty }x_{l\left( v\right) }\in A
\end{equation*}を満たす\(\left\{ x_{v}\right\} \)の部分列\(\left\{ x_{l\left( v\right) }\right\} \)が存在する場合には、\(A\)を\(\mathbb{R} ^{n}\)上の点列コンパクト集合(sequentially compact set)と呼びます。
\(\mathbb{R} ^{n}\)の部分集合\(A\)が点列コンパクト集合であるためには、\(A\)の要素を項として持つ「任意の」点列が\(A\)の要素へ収束する部分列を持つことを示す必要があります。\(A\)の要素を項として持つ点列の中に、\(A\)の要素へ収束する部分列を持つものが「存在する」ことを示しただけでは不十分です。
\end{equation*}です。部分列\(\left\{ x_{l\left( v\right)}\right\} \)を任意に選んだとき、やはり必然的に、\begin{equation}\forall v\in \mathbb{N} :x_{l\left( v\right) }=a \quad \cdots (1)
\end{equation}が成り立つため、その極限は、\begin{eqnarray*}
\lim_{v\rightarrow \infty }x_{l\left( v\right) } &=&\lim_{n\rightarrow
\infty }a\quad \because \left( 1\right) \\
&=&a\quad \because \text{定数点列の極限} \\
&\in &\left\{ a\right\}
\end{eqnarray*}を満たすため、\(\left\{ a\right\} \)は\(\mathbb{R} ^{n}\)上の点列コンパクト集合であることが明らかになりました。
&&\left( b\right) \ \left\{ x_{v}\right\} \text{のすべての項が}b \\
&&\left( c\right) \ \left\{ x_{v}\right\} \text{が}a,b\text{の両方を項として持つ}
\end{eqnarray*}の3通りです。\(\left( a\right) \)の場合、部分列\(\left\{ x_{l\left( v\right)}\right\} \)は必然的に、\begin{equation*}\forall l\in \mathbb{N} :x_{l\left( v\right) }=a
\end{equation*}を満たすため、その極限は、\begin{equation*}
\lim_{v\rightarrow \infty }x_{l\left( v\right) }=a\in \left\{ a,b\right\}
\end{equation*}を満たします。\(\left( b\right) \)の場合、部分列\(\left\{ x_{l\left(l\right) }\right\} \)は必然的に、\begin{equation*}\forall l\in \mathbb{N} :x_{l\left( l\right) }=b
\end{equation*}を満たすため、その極限は、\begin{equation*}
\lim_{v\rightarrow \infty }x_{l\left( v\right) }=b\in \left\{ a,b\right\}
\end{equation*}を満たします。\(\left( c\right) \)の場合、\begin{equation*}\forall l\in \mathbb{N} :x_{l\left( v\right) }=a
\end{equation*}を満たす部分列\(\left\{ x_{l\left(v\right) }\right\} \)をとれば、\begin{equation*}\lim_{v\rightarrow \infty }x_{l\left( v\right) }=a\in \left\{ a,b\right\}
\end{equation*}が成り立ちます。したがって、\(\left\{ a,b\right\} \)は\(\mathbb{R} ^{n}\)上の点列コンパクト集合です。
逆に、\(\mathbb{R} ^{n}\)の部分集合\(A\)が点列コンパクトでないことを示すためには、\(A\)の要素を項として持つ数列の中に、\(A\)の要素へ収束する部分列を持たないものが存在することを示せばよいということになります。以下の例から明らかであるように、\(\mathbb{R} ^{n}\)の部分集合は点列コンパクトであるとは限りません。
\end{equation*}を満たす点列\(\left\{ x_{v}\right\} \)に注目したとき、これは有界ではないため、\(\left\{ x_{v}\right\} \)の任意の部分列は収束しません。
直方体は点列コンパクト集合
これまでは自明なケースを扱いましたが、点列コンパクト集合としては以下が重要です。
有界な閉集合は点列コンパクト集合
\(\mathbb{R} ^{n}\)上の直方体が点列コンパクトであることが明らかになりました。直方体は\(\mathbb{R} ^{n}\)上の有界な閉集合ですが、一般に、有界な閉集合もまた点列コンパクト集合であることが保証されます。
点列コンパクト集合は有界な閉集合
実は、上の命題の逆もまた成立します。つまり、\(\mathbb{R} ^{n}\)上の点列コンパクト集合は有界な閉集合です。
以上の2つの命題により、\(\mathbb{R} ^{n}\)の部分集合が点列コンパクトであることと、その集合が\(\mathbb{R} ^{n}\)上の有界な閉集合であることが明らかになりました。さらに、\(\mathbb{R} ^{n}\)の部分集合が有界な閉集合であることと、その集合が\(\mathbb{R} ^{n}\)上のコンパクト集合であることは必要十分であるため、以下の命題が成り立ちます。
&&\left( b\right) \ A\text{は}\mathbb{R} ^{n}\text{上の有界な閉集合である} \\
&&\left( c\right) \ A\text{は}\mathbb{R} ^{n}\text{上の点列コンパクト集合である}
\end{eqnarray*}
コンパクト集合ではないことの証明
先の命題より、\(\mathbb{R} ^{n}\)の部分集合がコンパクト集合であることを示すためには、それが\(\mathbb{R} ^{n}\)上の有界な閉集合であることを示したり、それが\(\mathbb{R} ^{n}\)上の点列コンパクト集合であることを示せばよいことになります。逆に、\(\mathbb{R} ^{n}\)の部分集合が有界でない場合、閉集合でない場合、点列コンパクト集合でない場合などには、その集合はコンパクト集合ではありません。
\end{equation}が\(\mathbb{R} ^{n}\)上のコンパクト集合ではありませんが、同じことを先の命題から示します。つまり、\(\left( 1\right) \)が点列コンパクト集合ではないことを示します。そこで、以下の点列\begin{equation*}\left\{ x_{v}\right\} =\left\{ \left( x_{v}^{\left( 1\right) },\cdots
,x_{v}^{\left( n\right) }\right) \right\} =\left\{ \left( \frac{1}{v},\cdots
,\frac{1}{v}\right) \right\}
\end{equation*}に注目します。この点列\(\left\{ x_{n}\right\} \)の任意の項は\(\left( 1\right) \)の点です。その一方で、部分列\(\left\{ x_{l\left( v\right) }\right\} \)を任意に選んだとき、その極限は、\begin{eqnarray*}\lim_{v\rightarrow \infty }x_{l\left( v\right) } &=&\lim_{v\rightarrow
\infty }\left( \frac{1}{l\left( v\right) },\cdots ,\frac{1}{l\left( v\right)
}\right) \quad \because \left\{ x_{v}\right\} \text{の定義}
\\
&=&\left( \lim_{v\rightarrow \infty }\frac{1}{l\left( v\right) },\cdots
,\lim_{v\rightarrow \infty }\frac{1}{l\left( v\right) }\right) \\
&=&\left( \lim_{l\left( v\right) \rightarrow \infty }\frac{1}{l\left(
v\right) },\cdots ,\lim_{l\left( v\right) \rightarrow \infty }\frac{1}{l\left( v\right) }\right) \quad \because \text{部分列の定義} \\
&=&\left( 0,\cdots ,0\right)
\end{eqnarray*}となりますが、これは\(\left( 1\right) \)の点ではありません。このような点列\(\left\{ x_{v}\right\} \)が存在することは、\(\left( 1\right) \)が点列コンパクト集合ではないことを意味します。
プレミアム会員専用コンテンツです
【ログイン】【会員登録】