WIIS

ディニ微分

有界変動関数の微分可能性

目次

関連知識

Mailで保存
Xで共有

有界変動関数の微分可能性

実数空間\(\mathbb{R} \)とルベーグ可測集合族\(\mathfrak{M}_{\mu }\)およびルベーグ測度\(\mu \)からなるルベーグ測度空間\(\left( \mathbb{R} ,\mathfrak{M}_{\mu },\mu \right) \)が与えられているものとします。

\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\begin{equation*}f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \end{equation*}が区間\(\left[ a,b\right] \)上において有界変動であることは、\(\left[ a,b\right] \)上での全変動\begin{eqnarray*}TV\left( f\right) &=&\sup \left\{ V\left( f,P\right) \in \mathbb{R} \ |\ P\text{は}\left[ a,b\right] \text{の分割}\right\} \\
&=&\sup \left\{ \sum_{k=1}^{n}\left\vert f\left( x_{k}\right) -f\left(
x_{k-1}\right) \right\vert \in \mathbb{R} \ |\ \left\{ x_{k}\right\} _{k=0}^{n}\text{は}\left[ a,b\right] \text{の分割}\right\}
\end{eqnarray*}が有限な実数として定まることを意味します。

関数\(f\)が区間\(\left[ a,b\right] \)上において有界変動であることと、何らかの2つの単調増加関数\(g,h:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)を用いて、\begin{equation*}f=g-h\end{equation*}という形で表せることは必要十分です。ルベーグの定理より、有界開区間上に定義された単調関数はほとんどいたるところで微分可能であるため、関数\(g,h\)はともに\(\left( a,b\right) \)上のほとんどいたるところで微分可能です。以上の事実を踏まえると、\(f\)もまた\(\left( a,b\right) \)上のほとんどいたるところで微分可能であることが示されます。

命題(有界変動関数の微分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)が区間\(\left[ a,b\right] \)上において有界変動であるならば、\(f\)は\(\left( a,b\right) \)上のほとんどいたるところで微分可能である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(定数関数の微分可能性)
関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)がそれぞれの\(x\in \left[ a,b\right] \)に対して定める値が、定数\(c\in \mathbb{R} \)を用いて、\begin{equation*}f\left( x\right) =c
\end{equation*}と表されるものとします。つまり、\(f\)は定数関数です。定数関数は微分可能であるため、\(f\)は\(\left( a,b\right) \)上の任意の点において微分可能です。同じことを先の命題から導きます。区間\(\left[ a,b\right] \)の分割\(P=\left\{ x_{k}\right\} _{k=0}^{n}\)を任意に選んだとき、\(P\)のもとでの\(f\)の変動は、\begin{eqnarray*}V\left( f,P\right) &=&\sum_{k=1}^{n}\left\vert f\left( x_{k}\right)
-f\left( x_{k-1}\right) \right\vert \quad \because \text{変動の定義} \\
&=&\sum_{k=1}^{n}\left\vert c-c\right\vert \quad \because f\text{の定義} \\
&=&\sum_{k=1}^{n}0 \\
&=&0
\end{eqnarray*}となります。以上より、正の実数\(M>0\)を適当に選べば、\begin{equation*}\forall P:V\left( f,P\right) \leq M
\end{equation*}が成り立つため、\(f\)は\(\left[ a,b\right] \)上で有界変動です。したがって、先の命題より\(f\)は\(\left( a,b\right) \)上のほとんどいたるところで微分可能ですが、これは先の結果と整合的です。
例(恒等関数の微分可能性)
関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ a,b\right] \)に対して、\begin{equation*}f\left( x\right) =x
\end{equation*}を定めるものとします。つまり、\(f\)は恒等関数です。恒等関数は微分可能であるため、\(f\)は\(\left( a,b\right) \)上の任意の点において微分可能です。同じことを先の命題から導きます。区間\(\left[ a,b\right] \)の分割\(P=\left\{ x_{k}\right\} _{k=0}^{n}\)を任意に選んだとき、\(P\)のもとでの\(f\)の変動は、\begin{eqnarray*}V\left( f,P\right) &=&\sum_{k=1}^{n}\left\vert f\left( x_{k}\right)
-f\left( x_{k-1}\right) \right\vert \quad \because \text{変動の定義} \\
&=&\sum_{k=1}^{n}\left\vert x_{k}-x_{k-1}\right\vert \quad \because f\text{の定義} \\
&=&\sum_{k=1}^{n}\left( x_{k}-x_{k-1}\right) \quad \because x_{k}>x_{k-1} \\
&=&\left( x_{1}-x_{0}\right) +\left( x_{2}-x_{1}\right) +\cdots +\left(
x_{n}-x_{n-1}\right) \\
&=&x_{n}-x_{0}\quad \because \text{相殺} \\
&=&b-a\quad \because \text{分割}P\text{の定義}
\end{eqnarray*}となります。\(b-a>0\)は定数であるとともに、\begin{equation*}\forall P:V\left( f,P\right) \leq b-a
\end{equation*}であるため、\(f\)は\(\left[ a,b\right]\)上で有界変動です。したがって、先の命題より\(f\)は\(\left( a,b\right) \)上のほとんどいたるところで微分可能ですが、これは先の結果と整合的です。
例(単調増加関数の微分可能性)
関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)は単調増加関数であるものとします。つまり、\begin{equation*}\forall x,x^{\prime }\in \left[ a,b\right] :\left[ x<x^{\prime }\Rightarrow
f\left( x\right) \leq f\left( x^{\prime }\right) \right] \end{equation*}が成り立つということです。区間\(\left[ a,b\right] \)の分割\(P=\left\{ x_{k}\right\} _{k=0}^{n}\)を任意に選んだとき、\(P\)のもとでの\(f\)の変動は、\begin{eqnarray*}V\left( f,P\right) &=&\sum_{k=1}^{n}\left\vert f\left( x_{k}\right)
-f\left( x_{k-1}\right) \right\vert \quad \because \text{変動の定義} \\
&\leq &\left\vert f\left( b\right) -f\left( a\right) \right\vert \quad
\because f\text{は単調増加}
\end{eqnarray*}を満たします。そこで、\begin{equation*}
M>\left\vert f\left( b\right) -f\left( a\right) \right\vert
\end{equation*}を満たす正の実数\(M>0\)を選べば、\begin{equation*}\forall P:V\left( f,P\right) \leq M
\end{equation*}が成り立つため、\(f\)は\(\left[ a,b\right] \)上で有界変動です。したがって、先の命題より\(f\)は\(\left( a,b\right) \)上のほとんどいたるところで微分可能ですが、これはルベーグの定理の主張に他なりません。つまり、先の命題はルベーグの定理の一般化です。
例(単調減少関数の微分)
関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)は単調減少関数であるものとします。つまり、\begin{equation*}\forall x,x^{\prime }\in \left[ a,b\right] :\left[ x<x^{\prime }\Rightarrow
f\left( x\right) \geq f\left( x^{\prime }\right) \right] \end{equation*}が成り立つということです。区間\(\left[ a,b\right] \)の分割\(P=\left\{ x_{k}\right\} _{k=0}^{n}\)を任意に選んだとき、\(P\)のもとでの\(f\)の変動は、\begin{eqnarray*}V\left( f,P\right) &=&\sum_{k=1}^{n}\left\vert f\left( x_{k}\right)
-f\left( x_{k-1}\right) \right\vert \quad \because \text{変動の定義} \\
&\leq &\left\vert f\left( b\right) -f\left( a\right) \right\vert \quad
\because f\text{は単調減少}
\end{eqnarray*}を満たします。そこで、\begin{equation*}
M>\left\vert f\left( b\right) -f\left( a\right) \right\vert
\end{equation*}を満たす正の実数\(M>0\)を選べば、\begin{equation*}\forall P:V\left( f,P\right) \leq M
\end{equation*}が成り立つため、\(f\)は\(\left[ a,b\right] \)上で有界変動です。したがって、先の命題より\(f\)は\(\left( a,b\right) \)上のほとんどいたるところで微分可能ですが、これはルベーグの定理の主張に他なりません。つまり、先の命題はルベーグの定理の一般化です。
例(有界変動関数の微分)
関数\(f:\mathbb{R} \supset \left[ -1,1\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ -1,1\right] \)に対して、\begin{equation*}f\left( x\right) =\left\{
\begin{array}{cc}
0 & \left( if\ x=0\right) \\
x^{2}\sin \left( \frac{1}{x}\right) & \left( if\ x\not=0\right)
\end{array}\right.
\end{equation*}を定めるものとします。この関数\(f\)は\(\left[ -1,1\right] \)上において単調関数ではありませんが有界変動です(演習問題)。したがって、先の命題より\(f\)は\(\left[-1,1\right] \)上のほとんどいたるところで微分可能です。

 

有界変動関数は任意の点において微分可能であるとは限らない

有界閉区間上に定義された有界変動関数はほとんどいたるところで微分可能であることが明らかになりました。その一方で、有界変動関数はすべての点において微分可能であるとは限りません。

まずは有限個の点において微分可能ではない有界変動関数の例です。

例(有界変動関数)
関数\(f:\mathbb{R} \supset \left[ 0,1\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ 0,1\right] \)に対して、\begin{equation*}f\left( x\right) =\left\{
\begin{array}{cc}
0 & \left( if\ 0\leq x<\frac{1}{2}\right) \\
1 & \left( if\ \frac{1}{2}\leq x\leq 1\right)
\end{array}\right.
\end{equation*}を定めるものとします。この関数\(f\)は\(\left[ 0,1\right]\)上において有界変動であるため(演習問題)、先の命題より\(f\)は\(\left( 0,1\right) \)上のほとんどいたるところで微分可能です。\(f\)が微分可能ではない\(\left( 0,1\right) \)上の点からなる集合は、\begin{equation*}\left\{ \frac{1}{2}\right\}
\end{equation*}ですが、これは有限集合です。

続いて、無限個の点において微分可能ではない有界変動関数の例です。

例(カントール関数の微分可能性)
カントール関数\(f:\mathbb{R} \supset \left[ 0,1\right] \rightarrow \mathbb{R} \)が与えられているものとします。カントール集合を\(\mathcal{C}\subset \left[ 0,1\right]\)表記します。カントール関数\(f\)は\(\left( 0,1\right) \backslash \mathcal{C}\)上の任意の点において微分可能ですが、カントール集合\(\mathcal{C}\)は零集合であるため、\(f\)は\(\left( 0,1\right) \)上のほとんどいたるところで微分可能です。同じことを先の命題から導きます。カントール集合\(f\)は\(\left[ 0,1\right] \)上において有界変動関数であるため、先の命題より、\(f\)は\(\left( 0,1\right) \)上のほとんどいたるところで微分可能ですが、これは先の結果と整合的です。カントール集合\(\mathcal{C}\)は非可算集合であるため、\(f\)が微分可能ではない点からなる集合は非可算集合です。

 

演習問題

問題(有界変動関数)
関数\(f:\mathbb{R} \supset \left[ 0,1\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ 0,1\right] \)に対して、\begin{equation*}f\left( x\right) =\left\{
\begin{array}{cc}
0 & \left( if\ 0\leq x<\frac{1}{2}\right) \\
1 & \left( if\ \frac{1}{2}\leq x\leq 1\right)
\end{array}\right.
\end{equation*}を定めるものとします。この関数\(f\)が\(\left[ 0,1\right]\)上において有界変動であることを示してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(有界変動関数の微分)
関数\(f:\mathbb{R} \supset \left[ -1,1\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ -1,1\right] \)に対して、\begin{equation*}f\left( x\right) =\left\{
\begin{array}{cc}
0 & \left( if\ x=0\right) \\
x^{2}\sin \left( \frac{1}{x}\right) & \left( if\ x\not=0\right)
\end{array}\right.
\end{equation*}を定めるものとします。\(f\)は\(\left[ -1,1\right] \)上において単調増加ではない一方で有界変動であることを示してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

Mailで保存
Xで共有

質問とコメント

プレミアム会員専用コンテンツです

会員登録

有料のプレミアム会員であれば、質問やコメントの投稿と閲覧、プレミアムコンテンツ(命題の証明や演習問題とその解答)へのアクセスなどが可能になります。

ワイズのユーザーは年齢・性別・学歴・社会的立場などとは関係なく「学ぶ人」として対等であり、お互いを人格として尊重することが求められます。ユーザーが快適かつ安心して「学ぶ」ことに集中できる環境を整備するため、広告やスパム投稿、他のユーザーを貶めたり威圧する発言、学んでいる内容とは関係のない不毛な議論などはブロックすることになっています。詳細はガイドラインをご覧ください。

誤字脱字、リンク切れ、内容の誤りを発見した場合にはコメントに投稿するのではなく、以下のフォームからご連絡をお願い致します。

プレミアム会員専用コンテンツです
ログイン】【会員登録