教材一覧
教材一覧
教材検索
VECTOR VALUED FUNCTION

点列を用いたベクトル値関数の収束判定

目次

Share on twitter
Twitterで共有
Share on email
メールで共有

ベクトル値関数の極限と点列の極限の関係

イプシロン・デルタ論法を使ってベクトル値関数が収束することを証明するのは面倒です。ベクトル値関数の極限は点列の極限を用いて表現することもでき、そちらの定義を利用した方がベクトル値関数が収束することを容易に示すことができる場合があります。順を追って説明します。

ベクトル値関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} ^{m}\)と点\(a\in \mathbb{R} \)および点\(b\in \mathbb{R} ^{m}\)が与えられたとき、\begin{equation*}\lim_{x\rightarrow a}f\left( x\right) =b
\end{equation*}が成り立つものとします。このとき、以下の条件\begin{eqnarray*}
&&\left( a\right) \ \forall v\in \mathbb{N} :x_{v}\in X \\
&&\left( b\right) \ \forall v\in \mathbb{N} :x_{v}\not=a \\
&&\left( c\right) \ \lim_{v\rightarrow +\infty }x_{v}=a
\end{eqnarray*}をすべて満たす数列\(\left\{ x_{v}\right\} \)を任意に選びます。つまり、\(a\)以外の\(X\)の点を項とするとともに、\(a\)へ収束する数列\(\left\{ x_{v}\right\} \)を任意に選ぶということです。この数列\(\left\{ x_{v}\right\} \)の任意の項\(x_{v}\)は\(X\)の要素であるため、それに対して\(f\)は像\(f\left( x_{v}\right) \)を定めます。\(f\left( x_{v}\right) \)は\(\mathbb{R} ^{m}\)の点であるため、これを項とする\(\mathbb{R} ^{m}\)上の点列\(\left\{ f\left( x_{v}\right) \right\} \)を構成できます。このとき、この点列\(\left\{f\left( x_{v}\right) \right\} \)が点\(b\)へ収束することが保証されます。

命題(ベクトル値関数の極限と点列の極限)
ベクトル値関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} ^{m}\)と点\(a\in \mathbb{R} \)および点\(b\in \mathbb{R} ^{m}\)が与えられたとき、\(a\)とは異なる\(X\)の点を項とするとともに\(a\)へ収束する数列\(\left\{ x_{v}\right\} \)を任意に選んだ上で、そこから\(\mathbb{R} ^{m}\)上の点列\(\left\{ f\left( x_{v}\right) \right\} \)をつくる。このとき、関数\(f\)について、\begin{equation*}\lim_{x\rightarrow a}f\left( x\right) =b
\end{equation*}が成り立つならば、先のように定義された任意の点列\(\left\{ f\left(x_{v}\right) \right\} \)について、\begin{equation*}\lim_{v\rightarrow +\infty }f\left( x_{v}\right) =b
\end{equation*}が成り立つ。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

上の命題の逆もまた成立します。つまり、ベクトル値関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} ^{m}\)と点\(a\in \mathbb{R} \)および点\(b\in \mathbb{R} ^{m}\)が与えられたとき、以下の条件\begin{eqnarray*}&&\left( a\right) \ \forall v\in \mathbb{N} :x_{v}\in X \\
&&\left( b\right) \ \forall v\in \mathbb{N} :x_{v}\not=a \\
&&\left( c\right) \ \lim_{v\rightarrow +\infty }x_{v}=a
\end{eqnarray*}をすべて満たす数列\(\left\{ x_{v}\right\} \)を任意に選んだ上で、さらにそこから点列\(\left\{ f\left( x_{v}\right) \right\} \)を構成します。このように定義される任意の点列\(\left\{ f\left( x_{v}\right) \right\} \)が\(b\)へ収束する場合には、\(x\)が\(a\)に限りなく近づくときに関数\(f\)が\(b\)へ収束することが保証されます。

命題(ベクトル値関数の極限と点列の極限)
ベクトル値関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} ^{m}\)と点\(a\in \mathbb{R} \)および点\(b\in \mathbb{R} ^{m}\)が与えられたとき、\(a\)とは異なる\(X\)の点を項とするとともに\(a\)へ収束する数列\(\left\{ x_{v}\right\} \)を任意に選んだ上で、そこから\(\mathbb{R} ^{m}\)上の点列\(\left\{ f\left( x_{v}\right) \right\} \)をつくる。このように定義された任意の点列\(\left\{ f\left( x_{v}\right) \right\} \)について、\begin{equation*}\lim_{v\rightarrow +\infty }f\left( x_{v}\right) =b
\end{equation*}が成り立つならば、関数\(f\)について、\begin{equation*}\lim_{x\rightarrow a}f\left( x\right) =b
\end{equation*}が成り立つ。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

この命題について注意しなければならないのは、\(a\)とは異なる\(X\)の点を項とするとともに\(a\)へ収束する「任意の」数列\(\left\{ x_{v}\right\} \)に対して、そこから構成される点列\(\{f\left( x_{v}\right) \}\)が\(b\)へ収束することが前提条件になっているという点です。したがって、このような性質を満たす数列\(\left\{ x_{v}\right\} \)が「存在する」ことを示しただけでは、上の命題が要求する前提条件を満たしたことにはなりません。

以上の2つの命題により、ベクトル値関数の極限という概念は点列の極限を用いて以下のように特徴づけられることが明らかになりました。

命題(ベクトル値関数の極限と点列の極限)
ベクトル値関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} ^{m}\)と点\(a\in \mathbb{R} \)および点\(b\in \mathbb{R} ^{m}\)が与えられたとき、\(a\)とは異なる\(X\)の点を項とするとともに\(a\)へ収束する数列\(\left\{ x_{v}\right\} \)を任意に選んだ上で、そこから\(\mathbb{R} ^{m}\)上の点列\(\left\{ f\left( x_{v}\right) \right\} \)をつくる。このように定義された任意の点列\(\left\{ f\left( x_{v}\right) \right\} \)について、\begin{equation*}\lim_{v\rightarrow +\infty }f\left( x_{v}\right) =b
\end{equation*}が成り立つことは、関数\(f\)について、\begin{equation*}\lim_{x\rightarrow a}f\left( x\right) =b
\end{equation*}が成り立つための必要十分条件である。

上の命題より、ベクトル値関数の収束可能性に関する議論を点列の収束可能性に関する議論に置き換えて考えることができます。さらに、点列の収束可能性に関する議論は、その座標数列の収束可能性に関する議論に置き換えることができるため、結局、ベクトル値関数の収束可能性に関する議論を数列の収束可能性に関する議論に帰着させることができます。

例(点列を用いたベクトル値関数の収束判定)
関数\(f:\mathbb{R} \rightarrow \mathbb{R} ^{2}\)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation*}f\left( x\right) =\left( x^{2}-x,x+1\right)
\end{equation*}を定めるものとします。\(x\rightarrow 0\)のときに\(f\)が収束するか判定します。そこで、\(0\)とは異なる実数を項とするとともに\(0\)へ収束する数列を任意に選びます。つまり、\begin{eqnarray*}&&\left( a\right) \ \forall v\in \mathbb{N} :x_{v}\not=0 \\
&&\left( b\right) \ \lim_{v\rightarrow \infty }x_{v}=0
\end{eqnarray*}をともに満たす数列\(\left\{ x_{v}\right\} \)を任意に選ぶということです。このとき、点列\begin{equation*}\left\{ f\left( x_{v}\right) \right\} =\left\{
x_{v}^{2}-x_{v},x_{v}+1\right\}
\end{equation*}の極限について、\begin{eqnarray*}
\lim_{v\rightarrow \infty }f\left( x_{v}\right) &=&\lim_{v\rightarrow
\infty }\left( x_{v}^{2}-x_{v},x_{v}+1\right) \quad \because \left\{ f\left(
x_{v}\right) \right\} \text{の定義} \\
&=&\left( \lim_{v\rightarrow \infty }\left( x_{v}^{2}-x_{v}\right)
,\lim_{v\rightarrow \infty }\left( x_{v}+1\right) \right) \quad \because
\text{点列の極限と座標数列の極限} \\
&=&\left( \left( \lim_{v\rightarrow \infty }x_{v}\right)
^{2}-\lim_{v\rightarrow \infty }x_{v},\lim_{v\rightarrow \infty
}x_{v}+\lim_{v\rightarrow \infty }1\right) \quad \because \text{収束する数列と演算} \\
&=&\left( 0^{2}-0,0+1\right) \quad \because \left( b\right) \\
&=&\left( 0,1\right)
\end{eqnarray*}となるため、先の命題より、\begin{equation*}
\lim_{x\rightarrow 0}f\left( x\right) =\left( 0,1\right)
\end{equation*}が成り立つことが明らかになりました。

 

ベクトル値関数が収束しないことの証明

先の命題は、ベクトル値関数が収束しないことを示す際にも有用です。ベクトル値関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} ^{m}\)と点\(a\in \mathbb{R} \)が与えられたとき、\(a\)とは異なる\(X\)の点を項とするとともに\(a\)へ収束する数列\(\left\{ x_{v}\right\} \)を適当に選びます。このとき、点列\(\left\{ f\left(x_{v}\right) \right\} \)が\(\mathbb{R} ^{m}\)の点へ収束しないのであれば、先の命題より、\(x\rightarrow a\)のときに\(f\)は\(\mathbb{R} ^{m}\)の点へ収束しません。

例(ベクトル値関数が収束しないことの証明)
関数\(f:\mathbb{R} \backslash \left\{ 0\right\} \rightarrow \mathbb{R} ^{2}\)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation*}f\left( x\right) =\left( \frac{1}{x^{2}},x+1\right)
\end{equation*}を定めるものとします。\(x\rightarrow 0\)のときに\(f\)が収束するか判定します。一般項が、\begin{equation*}x_{v}=\frac{1}{v}
\end{equation*}として与えられる数列\(\left\{ x_{v}\right\} \)に注目します。この数列は、\begin{eqnarray*}&&\left( a\right) \ \forall v\in \mathbb{N} :x_{v}\not=0 \\
&&\left( b\right) \ \lim_{v\rightarrow \infty }x_{v}=0
\end{eqnarray*}をともに満たします。その一方で、点列\begin{equation*}
\left\{ f\left( x_{v}\right) \right\} =\left\{ \frac{1}{x_{v}^{2}},x_{v}+1\right\}
\end{equation*}の第1座標数列\(\left\{ \frac{1}{x_{v}^{2}}\right\} \)について、\begin{eqnarray*}\lim_{v\rightarrow \infty }\left( \frac{1}{x_{v}^{2}}\right)
&=&\lim_{v\rightarrow \infty }\left( \frac{1}{\left( \frac{1}{v}\right) ^{2}}\right) \quad \because \left\{ x_{v}\right\} \text{の定義}
\\
&=&\lim_{v\rightarrow \infty }v^{2} \\
&=&\infty
\end{eqnarray*}となり有限な実数へ収束しないため、点列\(\left\{ f\left( x_{v}\right) \right\} \)もまた\(\mathbb{R} ^{2}\)の点へ収束しません。したがって、先の命題より、\(x\rightarrow 0\)のときに\(f\)は\(\mathbb{R} ^{2}\)の点へ収束しないことが明らかになりました。

ベクトル値関数\(f:\mathbb{R} \supset X\rightarrow \mathbb{R} ^{m}\)と点\(a\in \mathbb{R} \)が与えられたとき、\(a\)とは異なる\(X\)の点を項とするとともに\(a\)へ収束する2つの数列\(\left\{x_{v}\right\} ,\left\{ y_{v}\right\} \)を適当に選びます。このとき、点列\(\left\{ f\left( x_{v}\right) \right\} ,\left\{f\left( y_{v}\right) \right\} \)が異なる\(\mathbb{R} ^{m}\)の点へ収束するのであらば、先の命題より、\(x\rightarrow a\)のときに\(f\)は\(\mathbb{R} ^{m}\)の点へ収束しません。

例(ベクトル値関数が収束しないことの証明)
関数\(f:\mathbb{R} \rightarrow \mathbb{R} ^{2}\)はそれぞれの\(x\in \mathbb{R} \)に対して、\begin{equation*}f\left( x\right) =\left\{
\begin{array}{cc}
\left( 0,0\right) & \left( if\ x<0\right) \\
\left( 1,1\right) & \left( if\ x\geq 0\right)
\end{array}\right.
\end{equation*}を定めるものとします。\(x\rightarrow 0\)のときに\(f\)が収束するか判定します。一般項がそれぞれ、\begin{eqnarray*}x_{v} &=&\frac{1}{v} \\
y_{v} &=&-\frac{1}{v}
\end{eqnarray*}で与えられる数列\(\left\{x_{v}\right\} ,\left\{ y_{v}\right\} \)に注目します。数列\(\left\{ x_{v}\right\} \)に関しては、\begin{eqnarray*}&&\left( a\right) \ \forall v\in \mathbb{N} :x_{v}>0 \\
&&\left( b\right) \ \lim_{v\rightarrow \infty }x_{v}=0
\end{eqnarray*}が成り立つ一方で、点列\(\left\{ f\left( x_{v}\right) \right\} \)の極限は、\begin{eqnarray*}\lim_{v\rightarrow \infty }f\left( x_{v}\right) &=&\lim_{v\rightarrow
\infty }\left( 1,1\right) \quad \because f\text{の定義および}\left( a\right) \\
&=&\left( 1,1\right)
\end{eqnarray*}となります。一方、数列\(\left\{ y_{v}\right\} \)に関しては、\begin{eqnarray*}&&\left( c\right) \ \forall v\in \mathbb{N} :y_{v}<0 \\
&&\left( d\right) \ \lim_{v\rightarrow \infty }y_{v}=0
\end{eqnarray*}が成り立つ一方で、点列\(\left\{ f\left( y_{v}\right) \right\} \)の極限は、\begin{eqnarray*}\lim_{v\rightarrow \infty }f\left( y_{v}\right) &=&\lim_{v\rightarrow
\infty }\left( 0,0\right) \quad \because f\text{の定義および}\left( c\right) \\
&=&\left( 0,0\right)
\end{eqnarray*}となります。\(\left\{ f\left(x_{v}\right) \right\} \)と\(\left\{ f\left( y_{v}\right) \right\} \)は異なる極限へ収束することが示されたため、先の命題より、\(x\rightarrow 0\)のときに\(f\)は\(\mathbb{R} ^{2}\)の点へ収束しないことが明らかになりました。

次回はベクトル値関数の片側極限について解説します。

Share on twitter
Twitterで共有
Share on email
メールで共有
DISCUSSION

質問とコメント

プレミアム会員専用コンテンツです
ログイン】【会員登録

RELATED KNOWLEDGE

関連知識

ベクトル値関数
ベクトル値関数(曲線)の定義

実数空間もしくはその部分集合を定義域とし、値としてユークリッド空間の点をとる写像をベクトル値関数や曲線などと呼びます。

グラフ
ベクトル値関数のグラフ

ベクトル値関数 f が与えられたとき、y=f(x) を満たすベクトル (x,y) からなる集合を f のグラフと呼びます。

ベクトル値関数
ベクトル値関数による逆像と定義域

ベクトル値関数による点の逆像、集合の逆像、定義域などの概念を定義します。また、ベクトル値関数の定義域を求める方法を解説します。

ベクトル値関数
ベクトル値関数の極限

1変数のベクトル値関数(曲線)が収束することの意味を解説した上で、さらにイプシロン・デルタ論法を用いて厳密に定義します。

ベクトル値関数
成分関数を用いたベクトル値関数の収束判定

ベクトル値関数(曲線)が収束することと、そのすべての成分関数が収束することは必要十分です。したがって、ベクトル値関数の収束可能性に関する議論は、1変数関数である成分関数の収束可能性に関する議論に帰着させられます。

数列
点列

ユークリッド空間上の無限個の点を順番にならべたものを点列と呼びます。点列を自然数空間から実数空間への写像として定義することもできます。点列は数列を一般化した概念です。

点列
点列の極限

ユークリッド空間上の点列の項が先に進むにつれてある点に限りなく近づく場合、その点列は収束すると言います。また、点列の項が限りなく近づく先の点のことをその点列の極限と呼びます。点列の収束は数列の収束を一般化した概念です。

ベクトル値関数
ベクトル値関数の片側極限

1変数のベクトル値関数(曲線)の変数が点に限りなく近づいていく際の経路を指定する形で定義される極限概念を片側極限と呼びます。

点列
ユークリッド空間における部分列

ユークリッド空間における点列から無限個の項を抜き出して順番を保ったまま並べてできる点列をもとの点列の部分列と呼びます。点列の部分列は数列の部分列を一般化した概念です。