WIIS

SEARCH

教材を探す

数の体系

数の概念が自然数から整数、そして有理数へと拡張されてきた背景には、もとの数の範囲では不可能であった演算を可能にするという動機があります。また、数直線上に点を隙間なく並べるためには数の概念を有理数から実数へ拡張する必要があります。

命題論理とは何か

命題論理では個々の命題が具体的に何について言及しているかを問題とせず、それらを単に真か偽のどちらかの値をとる変数とみなした上で、考察対象である推論を記号化します。

無限小数としての実数

実数は有理数と無理数をあわせたもののことです。有理数は循環する無限小数であり無理数は循環しない無限小数ですから、実数とは循環するものとしないものを含めたすべての無限小数のことです。

1変数の拡大実数値関数

1変数関数が有限な実数に加えて正負の無限大を値としてとり得ることを認める場合、そのような関数を拡大実数値関数と呼びます。

区間の集合族

区間の長さと、その区間を分割して得られる小区間の長さの関係は、数直線の部分集合どうしの外延量の関係として捉えることができます。つまり、「区間の長さ」という外延量は数直線の部分集合族に導入されるということです。この集合族は集合半環としての性質を満たします。

公理主義的実数論

実数を無限小数として定義する場合、実数に関する議論はすべて無限小数に関する議論として行うことになるため不便です。そこで登場するのが公理主義という手法です。

囚人のジレンマ

囚人のジレンマとして広く知られるゲームの最も基本的なモデルを紹介し、それを戦略型ゲームとして定式化した上で、その均衡を分析します。

積分を用いた自然対数関数の定義

自然対数関数や自然対数などの概念は積分を用いて定義することもできます。その場合にも、自然対数関数の微分に関する既知の性質や対数法則などがそのまま成立します。

距離空間上の点列の定義

距離空間の無限個の点を順番に並べたものを点列と呼びます。点列は自然数空間から距離空間への写像と同一視されます。

多変数関数の多重リーマン積分可能性と定積分の定義

n次元空間上に存在する有界かつ閉な直方体領域上に定義された有界な多変数関数が多重リーマン積分可能であることの意味を定義するとともに、多重リーマン積分可能であること、ないし多重リーマン積分可能ではないことを判定する方法を解説します。

組合せオークションのモデル

異なる種類の商品が同時に売りに出され、入札者が商品の組合せに対して入札を行うオークションを分析するにあたり、問題をモデル化します。

集合の定義と表記

与えられた条件を満たす対象をすべて集めたものを集合と呼びます。集合は命題関数から定義することもできます。集合の表記方法としては、外延的表記と内包的表記があります。

n次元空間

有限n個の実数空間の直積集合をn次元空間と呼びます。これは実数のn組(成分が実数であるようなn次元ベクトル)をすべて集めてできる集合です。

区間の長さ

区間の外延量を表現する集合関数を定義します。この集合関数はσ-加法測度としての性質を満たすことを示します。

離散型の確率変数

それぞれの標本点に対して実数を1つずつ割り当てる写像を確率変数と呼びます。値域が有限集合または可算集合であるような確率変数を離散型の確率変数と呼びます。

集合の濃度

2つの集合の間に全単射が存在する場合には、それらの集合の濃度は等しいと言います。集合の濃度が等しいことを二項関係と解釈したとき、これは反射律・対称律・推移律を満たす同値関係です。

連立1次方程式の定義

連立1次方程式およびその解の概念を定義するとともに、連立1次方程式の具体例を提示します。

  • 分野で絞り込み

  • トピックで絞り込み

  • 並べ替え

Google SEARCH

Google検索

検索結果に満足できない場合には以下の検索窓にキーワードを再入力してください。Googleを利用したサイト内検索を行います。