WIIS

SEARCH

教材を探す

数の体系

数の概念が自然数から整数、そして有理数へと拡張されてきた背景には、もとの数の範囲では不可能であった演算を可能にするという動機があります。また、数直線上に点を隙間なく並べるためには数の概念を有理数から実数へ拡張する必要があります。

命題論理とは何か

命題論理では個々の命題が具体的に何について言及しているかを問題とせず、それらを単に真か偽のどちらかの値をとる変数とみなした上で、考察対象である推論を記号化します。

無限小数としての実数

実数は有理数と無理数をあわせたもののことです。有理数は循環する無限小数であり無理数は循環しない無限小数ですから、実数とは循環するものとしないものを含めたすべての無限小数のことです。

区間の集合族

区間の長さと、その区間を分割して得られる小区間の長さの関係は、数直線の部分集合どうしの外延量の関係として捉えることができます。つまり、「区間の長さ」という外延量は数直線の部分集合族に導入されるということです。この集合族は集合半環としての性質を満たします。

公理主義的実数論

実数を無限小数として定義する場合、実数に関する議論はすべて無限小数に関する議論として行うことになるため不便です。そこで登場するのが公理主義という手法です。

1変数の拡大実数値関数

1変数関数が有限な実数に加えて正負の無限大を値としてとり得ることを認める場合、そのような関数を拡大実数値関数と呼びます。

純粋交換経済のモデル

消費者と商品だけが存在する経済において、消費者たちが初期保有する商品をお互いに交換した上で消費する状況を純粋交換経済と呼ばれるモデルとして定式化します。

複素数の定義

実数を成分とする順序対を複素数と呼びます。複素数は平面上の点として表現したり、平面上の位置ベクトルとして表現できます。

組合せオークションのモデル

異なる種類の商品が同時に売りに出され、入札者が商品の組合せに対して入札を行うオークションを分析するにあたり、問題をモデル化します。

連立1次方程式の定義

連立1次方程式およびその解の概念を定義するとともに、連立1次方程式の具体例を提示します。

確率変数の定義

標本点に対して実数を1つずつ割り当てる写像を確率変数と呼びます。確率論の公理と整合的な形で確率変数の概念を定義します。

n次元空間

有限n個の実数空間の直積集合をn次元空間と呼びます。これは実数のn組(成分が実数であるようなn次元ベクトル)をすべて集めてできる集合です。

区間の長さ

区間の外延量を表現する集合関数を定義します。この集合関数はσ-加法測度としての性質を満たすことを示します。

離散型の確率変数

それぞれの標本点に対して実数を1つずつ割り当てる写像を確率変数と呼びます。値域が有限集合または可算集合であるような確率変数を離散型の確率変数と呼びます。

拡大実数系における距離

拡大実数系は区間と位相同型であるため、同相写像を利用することにより、区間上の距離を用いて拡大実数系上の距離を定義できます。

複素関数の定義と具体例

複素平面もしくはその部分集合を始集合とし、複素平面を終集合とする写像を複素関数と呼びます。つまり、複素関数とはそれぞれの複素数に対して複素数を1つずつ定める規則です。

集合の定義と表記

与えられた条件を満たす対象をすべて集めたものを集合と呼びます。集合は命題関数から定義することもできます。集合の表記方法としては、外延的表記と内包的表記があります。

  • 分野で絞り込み

  • トピックで絞り込み

  • 並べ替え

Google SEARCH

Google検索

検索結果に満足できない場合には以下の検索窓にキーワードを再入力してください。Googleを利用したサイト内検索を行います。