WIIS

述語論理

述語論理における論理式

目次

関連知識

Mailで保存
Xで共有

原子論理式

述語論理では議論に先立ち議論領域\begin{equation*}
D
\end{equation*}を設定する必要があります。つまり、議論の対象となるすべての変数と、それらの定義域を設定する必要があるということです。

述語論理における議論の最小単位は命題関数です。議論に先立って議論領域\(D\)を設けることは、\(D\)において定義されている変数に関する命題関数だけが議論の対象になり得ることを意味します。ただし、それぞれの命題関数は、議論領域\(D\)において定義されているすべての変数を自身の変数として持つ必要はありません。議論領域\(D\)が定義する変数の中の特定の変数だけを自身の変数として持つ命題関数や、変数を1つも持たない命題関数なども考察対象となります。逆に、議論領域\(D\)において定義されていない変数を自身の変数として持つ命題関数は議論の対象になりません。

命題関数\(P\)の真偽が議論領域\(D\)において定義されている1つの変数\(x\)の値に応じて確定する場合、そのことを、\begin{equation*}P\left( x\right)
\end{equation*}で表記します。変数\(x\)の定義域\(X\)を明示したい場合には、\begin{equation*}P\left( x\right) \quad \left( x\in X\right)
\end{equation*}と表記します。

命題関数\(P\)の真偽が議論領域\(D\)において定義されている複数の変数\(x_{1},\cdots ,x_{n}\)の値の組合せに応じて確定する場合、そのことを、\begin{equation*}P\left( x_{1},\cdots ,x_{n}\right)
\end{equation*}で表記します。変数\(x_{1},\cdots ,x_{n}\)の定義域\(X_{1},\cdots ,X_{n}\)を明示したい場合には、\begin{equation*}P\left( x_{1},\cdots ,x_{n}\right) \quad \left( x_{1}\in X_{n},\cdots
,x_{n}\in X_{n}\right)
\end{equation*}で表記します。

述語論理において議論の対象となる主張はいずれも命題関数どうしを一定のルールのもとで組み合わせた式として表現されます。そのような式を論理式(formula)と呼びます。

命題関数は論理式を構成する最小単位であるため、これを原子論理式(atomic formula)と呼ぶこともあります。述語論理において個々の原子論理式は単独で論理式とみなされます。

例(原子論理式)
変数\(x,y\)の定義域\(X,Y\)はともにすべての整数からなる集合であり、以上を議論領域\(D\)とします。このとき、\begin{eqnarray*}&&x\text{は偶数} \\
&&y\text{は奇数} \\
&&x+y\text{は偶数} \\
&&x+y\text{は奇数}
\end{eqnarray*}などはいずれも命題関数であるため、これらは\(D\)における原子論理式です。
例(原子論理式)
変数\(a,b,c\)の定義域\(A,B,C\)はともにすべての実数からなる集合であり、以上を議論領域\(D\)とします。このとき、\begin{eqnarray*}ax^{2}+bx+c &=&0\text{は2つの実数解を持つ} \\
ax^{2}+bx+c &=&0\text{は1つの実数解を持つ} \\
ax^{2}+bx+c &=&0\text{は実数解を持たない}
\end{eqnarray*}などはいずれも命題関数であるため、これらは\(D\)における原子論理式です。
例(原子論理式)
変数\(f,g\)の定義域\(F,G\)はともにすべての関数からなる集合であり、以上を議論領域\(D\)とします。このとき、\begin{eqnarray*}&&f\text{は微分可能である} \\
&&g\text{は微分可能である} \\
&&f\text{は}g\text{の導関数である}
\end{eqnarray*}などはいずれも命題関数であるため、これらは\(D\)における原子論理式です。

議論領域\(D\)における命題関数\begin{equation*}P\left( x_{1},\cdots ,x_{n}\right)
\end{equation*}が与えられたとき、その変数\(x_{1},\cdots ,x_{n}\)の中から特定の変数\(x_{1},\cdots ,x_{m}\ \left(m\leq n\right) \)を任意に選びます。その上で、これらの変数\(x_{1},\cdots ,x_{m}\)に特定の値\(\overline{x}_{1},\cdots ,\overline{x}_{m}\)を代入すれば、残りの変数\(x_{m+1},\cdots ,x_{n}\)に関する命題関数\begin{equation*}P\left( \overline{x}_{1},\cdots ,\overline{x}_{m},x_{m+1},\cdots
,x_{n}\right)
\end{equation*}が得られますが、これもまた\(D\)における原子論理式とみなします。特に、\(m=n\)の場合には、すべての変数\(x_{1},\cdots ,x_{n}\)に特定の値\(\overline{x}_{1},\cdots ,\overline{x}_{n}\)を代入することとなるため、変数を持たない命題\begin{equation*}P\left( \overline{x}_{1},\cdots ,\overline{x}_{n}\right)
\end{equation*}が得られますが、これもまた\(D\)における原子論理式とみなします。

例(原子論理式)
変数\(x,y\)の定義域\(X,Y\)はともにすべての整数からなる集合であり、以上を議論領域\(D\)とします。このとき、\begin{eqnarray*}&&x\text{は偶数である} \\
&&x+y\text{は偶数である}
\end{eqnarray*}はともに\(D\)における原子論理式です。さらに、変数\(x,y\)の少なくとも一方に何らかの値を代入して得られる、\begin{eqnarray*}&&1\text{は偶数である} \\
&&2\text{は偶数である} \\
&&1+y\text{は偶数である} \\
&&x+3\text{は偶数である} \\
&&2+3\text{は偶数である}
\end{eqnarray*}なども\(D\)における原子論理式です。
例(原子論理式)
変数\(a,b,c\)の定義域\(A,B,C\)はともにすべての実数からなる集合であり、以上を議論領域\(D\)とします。このとき、\begin{equation*}ax^{2}+bx+c=0\text{は実数解を持つ}
\end{equation*}は\(D\)における原子論理式です。さらに、変数\(a,b,c\)の少なくとも一つに何らかの値を代入して得られる、\begin{eqnarray*}x^{2}+x+c &=&0\text{は実数解を持つ}
\\
x^{2}+bx+2 &=&0\text{は実数解を持つ} \\
2x^{2}+x+3 &=&0\text{は実数解を持つ}
\end{eqnarray*}なども\(D\)における原子論理式です。
例(原子論理式)
変数\(f,g\)の定義域\(F,G\)はともにすべての関数からなる集合であり、以上を議論領域\(D\)とします。このとき、\begin{equation*}f\text{は}g\text{の導関数である}
\end{equation*}は\(D\)における原子論理式です。さらに、変数\(f,g\)の少なくとも一方に何らかの値を代入して得られる、\begin{eqnarray*}&&f\text{は}x^{2}+1\text{の導関数である} \\
&&2x\text{は}g\text{の導関数である} \\
&&2x\text{は}x^{2}+1\text{の導関数である}
\end{eqnarray*}なども\(D\)における原子論理式です。

繰り返しになりますが、述語論理において、個々の原子論理式は単独で論理式とみなされます。つまり、議論領域\(D\)における命題関数や、そこから上のようにして生成される命題関数や命題などはいずれも議論領域\(D\)における論理式とみなされます。

 

論理演算

述語論理では、議論領域\(D\)における原子論理式\(P,Q,\cdots \)に対して行う操作を表す記号\(\lnot ,\wedge ,\vee,\veebar ,\rightarrow ,\leftrightarrow \)を導入した上で、これらを原子論理式に作用させることにより新たな論理式を作り出します。記号\(\lnot ,\wedge ,\vee ,\veebar ,\rightarrow,\leftrightarrow \)を論理演算子(logical operators)や論理結合子(logical connectives)などと呼び、論理演算子が表す操作を論理演算(logical operation)と呼びます。

それぞれの論理演算子の意味は後ほど解説することとして、まずは論理式という概念を形式的に定義します。議論領域\(D\)における原子論理式\(P\)に論理演算子\(\lnot \)を作用させることにより得られる論理式を、\begin{equation*}\lnot P
\end{equation*}で表記し、原子論理式\(P,Q\)に論理演算子\(\wedge \)を作用させることにより得られる論理式を、\begin{equation*}P\wedge Q
\end{equation*}で表記します。また、原子論理式\(P,Q\)に論理演算子\(\vee \)を作用させることにより得られる論理式を、\begin{equation*}P\vee Q
\end{equation*}で表記し、原子論理式\(P,Q\)に論理演算子\(\veebar \)を作用させることにより得られる論理式を、\begin{equation*}P\veebar Q
\end{equation*}で表記し、また、原子論理式\(P,Q\)に論理演算子\(\rightarrow \)を作用させることで得られる論理式を、\begin{equation*}P\rightarrow Q
\end{equation*}で表記し、原子論理式\(P,Q\)に論理演算子\(\leftrightarrow \)を作用させることで得られる論理式を、\begin{equation*}P\leftrightarrow Q
\end{equation*}で表記します。これらの論理式の意味については後ほど解説します。

例(論理演算)
議論領域\(D\)において変数\(x,y\)が定義されているとき、命題関数\begin{equation*}P\left( x\right) ,\ Q\left( y\right) ,\ R\left( x,y\right)
\end{equation*}はいずれも\(D\)における原子論理式であるため論理式でもあります。変数\(x,y\)に代入する値\(\overline{x},\overline{y}\)を任意に選んだとき、\begin{equation*}P\left( \overline{x}\right) ,\ Q\left( \overline{y}\right) ,\ R\left(
\overline{x},y\right) ,\ R\left( x,\overline{y}\right) ,\ R\left( \overline{x},\overline{y}\right)
\end{equation*}などはいずれも\(D\)における原子論理式であるため論理式でもあります。原子論理式に論理演算子を作用させたものは\(D\)における論理式であるため、例えば、\begin{eqnarray*}&&\lnot P\left( x\right) \\
&&P\left( x\right) \wedge Q\left( \overline{y}\right) \\
&&R\left( x,y\right) \rightarrow \left( Q\left( y\right) \vee P\left(
\overline{x}\right) \right)
\end{eqnarray*}などはいずれも\(D\)における論理式です。論理式に論理演算子を作用させたものは論理式であるため、例えば、\begin{eqnarray*}&&\left( \lnot P\left( x\right) \right) \veebar \left( P\left( x\right)
\wedge Q\left( \overline{y}\right) \right) \\
&&\left( \lnot R\left( x,y\right) \rightarrow \left( Q\left( y\right) \vee
P\left( \overline{x}\right) \right) \right) \wedge \left( P\left( x\right)
\wedge Q\left( \overline{y}\right) \right)
\end{eqnarray*}などはいずれも\(D\)における論理式です。

 

量化

述語論理では論理演算子\(\lnot ,\wedge ,\vee ,\veebar ,\rightarrow ,\leftrightarrow \)とは別の演算子\(\forall ,\exists \)を導入した上で、これらを議論領域\(D\)における原子論理式へ作用させて得られる式もまた\(D\)における論理式とみなします。記号\(\forall \)は\ all\ ないし\ any\ の頭文字である\ A\ を逆さにしたものであり、これを全称記号(universal quantifier)や全称量化記号などと呼びます。一方、記号\(\exists \)は\ exist\ の頭文字であるEを逆さにしたものであり、これを存在記号(existential quantifier)や存在量化記号などと呼びます。全称記号と存在記号を総称して量化記号(quantifier)や限定記号などと呼び、原子論理式に量化記号を作用させることを量化(quantification)と呼びます。

量化記号の意味については後ほど解説することとして、まずは論理式という概念を形式的に定義します。議論領域\(D\)における原子論理式\(P\)と変数\(x\in X\)をそれぞれ任意に選んだとき、\(P\)に\(\forall \)を作用させることで得られる論理式を、\begin{equation*}\forall x\in X:P
\end{equation*}で表記し、\(P\)に\(\exists \)を作用させることで得られる論理式を、\begin{equation*}\exists x\in X:P
\end{equation*}で表記します。これらの論理式の意味については後ほど解説します。

例(量化)
議論領域\(D\)において変数\(x,y\)が定義されているとともに、以下の命題関数\begin{equation*}P\left( x\right) ,\ Q\left( y\right) ,\ R\left( x,y\right)
\end{equation*}が定義されているものとします。これらは\(D\)における原子論理式です。変数\(x,y\)に代入する値\(\overline{x},\overline{y}\)を任意に選んだとき、\begin{equation*}P\left( \overline{x}\right) ,\ Q\left( \overline{y}\right) ,\ R\left(
\overline{x},y\right) ,\ R\left( x,\overline{y}\right) ,\ R\left( \overline{x},\overline{y}\right)
\end{equation*}などはいずれも\(D\)における原子論理式であるため論理式でもあります。原子論理式に量化記号を作用させたものも\(D\)における論理式であるため、例えば、\begin{eqnarray*}\forall x &\in &X:P\left( x\right) \\
\forall y &\in &Y:Q\left( y\right) \\
\forall y &\in &Y:R\left( x,y\right)
\end{eqnarray*}などは\(D\)における論理式です。論理式に論理演算子を作用させたものは\(D\)における論理式であるため、例えば、\begin{eqnarray*}\forall x &\in &X:\left( \lnot P\left( x\right) \right) \\
\forall y &\in &X:\left( \forall y\in Y:R\left( x,y\right) \right) \\
\forall x &\in &X:\left( R\left( x,y\right) \rightarrow \left( Q\left(
y\right) \vee P\left( \overline{x}\right) \right) \right)
\end{eqnarray*}などは\(D\)における論理式です。

 

論理式の論理演算と量化

述語論理では議論領域\(D\)における原子論理式\(P,Q,\cdots \)に対して論理演算子\(\lnot ,\wedge ,\vee ,\veebar ,\rightarrow ,\leftrightarrow \)や量化記号\(\forall ,\exists \)を作用させることにより論理式を生成するだけでなく、そのようにして生成された論理式\(A,B,\cdots \)に対して再び論理演算子\(\lnot ,\wedge ,\vee ,\veebar,\rightarrow ,\leftrightarrow \)や量化記号\(\forall ,\exists \)を作用させることによる得られる式もまた論理式とみなします。

それぞれの論理演算子の意味は後ほど解説することとして、まずは論理式という概念を形式的に定義します。議論領域\(D\)における論理式\(A\)に論理演算子\(\lnot \)を作用させることにより得られる論理式を、\begin{equation*}\lnot A
\end{equation*}で表記し、論理式\(A,B\)に論理演算子\(\wedge \)を作用させることにより得られる論理式を、\begin{equation*}A\wedge B
\end{equation*}で表記します。また、論理式\(A,B\)に論理演算子\(\vee \)を作用させることにより得られる論理式を、\begin{equation*}A\vee B
\end{equation*}で表記し、論理式\(A,B\)に論理演算子\(\veebar \)を作用させることにより得られる論理式を、\begin{equation*}A\veebar B
\end{equation*}で表記し、また、論理式\(A,B\)に論理演算子\(\rightarrow \)を作用させることで得られる論理式を、\begin{equation*}A\rightarrow B
\end{equation*}で表記し、論理式\(A,B\)に論理演算子\(\leftrightarrow \)を作用させることで得られる論理式を、\begin{equation*}A\leftrightarrow B
\end{equation*}で表記します。また、議論領域\(D\)における論理式\(A\)と変数\(x\in X\)をそれぞれ任意に選んだとき、\(A\)に\(\forall \)を作用させることで得られる論理式を、\begin{equation*}\forall x\in X:A
\end{equation*}で表記し、\(A\)に\(\exists \)を作用させることで得られる論理式を、\begin{equation*}\exists x\in X:A
\end{equation*}で表記します。これらの論理式の意味については後ほど解説します。

 

論理式の再帰的定義

繰り返しになりますが、述語論理において原子論理式\(P,Q,\cdots \)は単独で論理式とみなされます。また、原子論理式に論理演算子\(\lnot ,\wedge ,\vee ,\veebar ,\rightarrow ,\leftrightarrow \)や量化記号\(\forall ,\exists \)を作用させることで得られる式\(A,B,\cdots \)も論理式とみなされます。また、そのようにして得られた論理式\(A,B,\cdots \)に論理演算子\(\lnot ,\wedge ,\vee ,\veebar ,\rightarrow ,\leftrightarrow \)や量化記号\(\forall ,\exists \)を作用させることで得られる式も論理式です。

以上を踏まえた上で、議論領域\(D\)における論理式を以下のように再帰的に定義します。

定義(論理式)
以下と定める。

  1. 議論領域\(D\)の原子論理式は\(D\)の論理式である。
  2. \(A\)が\(D\)の論理式ならば、\(\left( \lnot A\right) \)は\(D\)の論理式である。
  3. \(A,B\)が\(D\)の論理式ならば、\(\left( A\wedge B\right) \)は\(D\)の論理式である。
  4. \(A,B\)が\(D\)の論理式ならば、\(\left( A\vee B\right) \)は\(D\)の論理式である。
  5. \(A,B\)が\(D\)の論理式ならば、\(\left( A\veebar B\right) \)は\(D\)の論理式である。
  6. \(A,B\)が\(D\)の論理式ならば、\(\left( A\rightarrow B\right) \)は\(D\)の論理式である。
  7. \(A,B\)が\(D\)の論理式ならば、\(\left( A\leftrightarrow B\right) \)は\(D\)の論理式である。
  8. \(A\)が\(D\)の論理式であり、\(x\in X\)が\(D\)の変数ならば、\(\left( \forall x\in X:A\right) \)は\(D\)の論理式である。
  9. \(A\)が\(D\)の論理式であり、\(x\in X\)が\(D\)の変数ならば、\(\left( \exists x\in X:A\right) \)は\(D\)の論理式である。
  10. 以上から論理式と判定されるものだけが論理式である。

論理式の例をいくつか挙げます。

例(論理式)
議論領域\(D\)において変数\(x,y\)が定義されているとき、ルール1より命題関数\(P\left( x,y\right) \)は論理式です。したがって、ルール2より、\begin{equation*}\left( \lnot P\left( x,y\right) \right)
\end{equation*}もまた論理式です。ちなみに、\(\left( P\left( x,y\right) \right) \)や\(\lnot \left( P\left( x,y\right) \right) \)は論理式ではありません。なぜなら、これらが論理式であることを認めるルールは存在しないからです。
例(論理式)
議論領域\(D\)において変数\(x,y,z\)が定義されているとき、ルール1より命題関数\(P\left( x,y\right) ,Q\left( x\right),R\left( x,y,z\right) \)はいずれも\(D\)における論理式です。したがって、ルール3より、\begin{equation*}\left( P\left( x,y\right) \wedge Q\left( x\right) \right)
\end{equation*}もまた論理式です。以上の事実とルール4より、\begin{equation*}
\left( \left( P\left( x,y\right) \wedge Q\left( x\right) \right) \vee
R\left( x,y,z\right) \right)
\end{equation*}もまた論理式です。

例(論理式)
議論領域\(D\)において変数\(x,y,z\)が定義されているとき、ルール1より命題関数\(P\left( x,y\right) ,Q\left( x\right),R\left( x,y,z\right) \)はいずれも\(D\)における論理式です。したがって、ルール3とルール6より、\begin{equation*}(\left( \lnot P\left( x,y\right) \right) \rightarrow \left( Q\left( x\right)
\wedge R\left( x,y,z\right) \right) )
\end{equation*}は論理式です。以上の事実とルール9より、\begin{equation*}
(\exists x\in X:(\left( \lnot P\left( x,y\right) \right) \rightarrow \left(
Q\left( x\right) \wedge R\left( x,y,z\right) \right) ))
\end{equation*}は論理式です。以上の事実とルール8より、\begin{equation*}
\left( \forall y\in Y:(\exists x\in X:(\left( \lnot P\left( x,y\right)
\right) \rightarrow \left( Q\left( x\right) \wedge R\left( x,y,z\right)
\right) ))\right)
\end{equation*}もまた論理式です。

 

論理式中の括弧の省略

上の最後の例のように、定義にもとづいて生成された論理式が括弧\(\left( \ \right) \)を多く含む場合には見づらいため、以下のルールのもとで括弧を省略できるものと定めます。

  1. 一番外側の括弧は省略できる。
  2. 括弧を省略した結果、複数の論理演算子や量化記号が括弧によって遮られない形で存在している場合には、最初に\(\lnot ,\forall,\exists \)を作用させ、次に\(\vee ,\wedge ,\veebar \)を作用させ、最後に\(\rightarrow ,\leftrightarrow \)を作用させる。以上のルールを踏まえた上で、論理式中のある括弧を外して新たな式を得たときに、その式における論理演算子と量化記号の作用の順番がもとの論理式の内容と整合的であるならば、その括弧を省略できる。

いくつか例を挙げます。

例(論理式の括弧の省略)
論理式\begin{equation*}
\left( \lnot P\left( x,y\right) \right)
\end{equation*}の一番外側の括弧は省略できるため、これを、\begin{equation*}
\lnot P\left( x,y\right)
\end{equation*}と表現することもできます。

例(論理式の括弧の省略)
論理式\begin{equation*}
\left( \left( P\left( x,y\right) \wedge Q\left( x\right) \right) \vee
R\left( x,y,z\right) \right)
\end{equation*}の一番外側の括弧は省略できるため、これを、\begin{equation*}
\left( P\left( x,y\right) \wedge Q\left( x\right) \right) \vee R\left(
x,y,z\right)
\end{equation*}と表現することもできます。ちなみに、この論理式を、\begin{equation*}
P\left( x,y\right) \wedge Q\left( x_{1}\right) \vee R\left( x,y,z\right)
\end{equation*}と表現することはできません。なぜなら\(\wedge \)と\(\vee \)は作用の順番が等しいため、上のような形で括弧を外してしまうと、これが以下の2つ\begin{eqnarray*}&&\left( P\left( x,y\right) \wedge Q\left( x\right) \right) \vee R\left(
x,y,z\right) \\
&&P\left( x,y\right) \wedge \left( Q\left( x\right) \vee R\left(
x,y,z\right) \right)
\end{eqnarray*}のどちらの意味であるか判別できないからです。

例(論理式の括弧の省略)
論理式\begin{equation*}
\left( \forall y\in Y:\left( \exists x\in X:\left( \left( \lnot P\left(
x,y\right) \right) \rightarrow \left( Q\left( x\right) \wedge R\left(
x,y,z\right) \right) \right) \right) \right)
\end{equation*}の一番外側の括弧は省略できるため、これを、\begin{equation*}
\forall y\in Y:\left( \exists x\in X:\left( \left( \lnot P\left( x,y\right)
\right) \rightarrow \left( Q\left( x\right) \wedge R\left( x,y,z\right)
\right) \right) \right)
\end{equation*}と表現することができます。\(\lnot \)は\(\rightarrow \)よりも先に作用させるルールであるため、\begin{equation*}\forall y\in Y:\left( \exists x\in X:\left( \lnot P\left( x,y\right)
\rightarrow \left( Q\left( x\right) \wedge R\left( x,y,z\right) \right)
\right) \right)
\end{equation*}としても問題ありません。

 

部分論理式

命題関数\(P\left( x,y\right) ,Q\left( x\right) \)に関する以下の式\begin{equation}\forall x\in X:\left( \lnot P\left( x,y\right) \wedge Q\left( x\right)
\right) \quad \cdots (1)
\end{equation}が論理式であることを順番に確認します。まず、命題関数は論理式とみなされるため、\begin{equation}
P\left( x,y\right) ,\ Q\left( x\right) \quad \cdots (2)
\end{equation}はいずれも論理式です。\(P\left( x,y\right) \)が論理式であるならば、それに論理演算子\(\lnot \)をさせて得られる、\begin{equation}\lnot P\left( x,y\right) \quad \cdots (3)
\end{equation}は論理式です。\(Q\left( x\right) \)と\(\lnot P\left( x,y\right) \)が論理式であるならば、それらに論理演算子\(\wedge \)を作用させて得られる、\begin{equation}\lnot P\left( x,y\right) \wedge Q\left( x\right) \quad \cdots (4)
\end{equation}は論理式です。したがってこれに量化記号\(\forall \)を作用させて得られる、\begin{equation*}\forall x\in X:\left( \lnot P\left( x,y\right) \wedge Q\left( x\right)
\right)
\end{equation*}は論理式ですが、これは\(\left( 1\right) \)に他なりません。以上で確認が完了しました。

論理式\(\left( 1\right) \)を生成する過程において登場した論理式\(\left( 2\right) ,\left( 3\right),\left( 4\right) \)に\(\left( 1\right) \)自身を加えたものを当初の論理式\(\left( 1\right) \)の部分論理式(subformula)と呼びます。つまり、ある論理式の部分論理式とは、その論理式を生成するために部品となるすべての論理式を指します。また、論理式自身をその論理式の部分論理式とみなします。

部分論理式を以下のように再帰的に定義します。

定義(部分論理式)
以下と定める。

  1. 論理式\(A\)自身は\(A\)の部分論理式である。
  2. 論理式\(A\)が論理式\(B\)を用いて\(\left( \lnot B\right) \)の形で表されているとき、\(B\)の部分論理式はすべて\(A\)の部分論理式でもある。
  3. 論理式\(A\)が論理式\(B,C\)を用いて\(\left( B\wedge C\right) \)の形で表されているとき、\(B,C\)の部分論理式はすべて\(A\)の部分論理式である。
  4. 論理式\(A\)が論理式\(B,C\)を用いて\(\left( B\vee C\right) \)の形で表されているとき、\(B,C\)の部分論理式はすべて\(A\)の部分論理式である。
  5. 論理式\(A\)が論理式\(B,C\)を用いて\(\left( B\veebar C\right) \)の形で表されているとき、\(B,C\)の部分論理式はすべて\(A\)の部分論理式である。
  6. 論理式\(A\)が論理式\(B,C\)を用いて\(\left( B\rightarrow C\right) \)の形で表されているとき、\(B,C\)の部分論理式はすべて\(A\)の部分論理式である。
  7. 論理式\(A\)が論理式\(B,C\)を用いて\(\left( B\leftrightarrow C\right) \)の形で表されているとき、\(B,C\)の部分論理式はすべて\(A\)の部分論理式である。
  8. 論理式\(A\)が論理式\(B\)と変数\(x\in X\)を用いて\(\left( \forall x\in X:B\right) \)の形で表されているとき、\(B\)の部分論理式はすべて\(A\)の部分論理式である。
  9. 論理式\(A\)が論理式\(B\)と変数\(x\in X\)を用いて\(\left( \exists x\in X:B\right) \)の形で表されているとき、\(B\)の部分論理式はすべて\(A\)の部分論理式である。
例(部分論理式)
命題関数\(P\left( x\right) \)から生成される論理式\begin{equation*}\lnot P\left( x\right)
\end{equation*}の部分論理式を特定します。下の表の左側の列には論理式が、右側の列にはその部分論理式が記されています。

$$\begin{array}{cc}
\hline
論理式 & 部分論理式 \\ \hline
P\left( x\right) & P\left( x\right) \\ \hline
\lnot P\left( x\right) & P\left( x\right) ,\ \lnot P\left( x\right) \\
\hline
\end{array}$$

例(部分論理式)
命題関数\(P\left( x\right) ,Q\left( y\right) \)から生成される論理式\begin{equation*}\lnot P\left( x\right) \wedge Q\left( y\right)
\end{equation*}の部分論理式を特定します。下の表の左側の列には論理式が、右側の列にはその部分論理式が記されています。

$$\begin{array}{cc}
\hline
論理式 & 部分論理式 \\ \hline
P\left( x\right) & P\left( x\right) \\ \hline
Q\left( x\right) & Q\left( x\right) \\ \hline
\lnot P\left( x\right) & P\left( x\right) ,\ \lnot P\left( x\right) \\
\hline
\lnot P\left( x\right) \wedge Q\left( y\right) & P\left( x\right) ,\ \lnot P\left( x\right) ,\ Q\left( x\right) ,\ \lnot P\left( x\right) \wedge Q\left( y\right) \\ \hline
\end{array}$$

例(部分論理式)
命題関数\(P\left( x\right) ,Q\left( y\right) \)から生成される論理式\begin{equation*}\forall x\in X:\lnot P\left( x\right)
\end{equation*}の部分論理式を特定します。下の表の左側の列には論理式が、右側の列にはその部分論理式が記されています。

$$\begin{array}{cc}
\hline
論理式 & 部分論理式 \\ \hline
P\left( x\right) & P\left( x\right) \\ \hline
\lnot P\left( x\right) & P\left( x\right) ,\ \lnot P\left( x\right) \\
\hline
\forall x\in X:\lnot P\left( x\right) & P\left( x\right) ,\ \lnot P\left( x\right) ,\ \forall x\in X:\lnot P\left( x\right) \\ \hline
\end{array}$$

 

演習問題

問題(論理式)
\(P\left( x\right) ,Q\left( x\right) \)がともに命題関数であるとき、以下の式\begin{equation*}\left( Q\left( y\right) \left( \lnot P\left( x\right) \right) \right)
\end{equation*}は論理式でしょうか。論理式である場合には括弧も外してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(論理式)
\(P\left( x\right) ,Q\left( y\right) ,R\left( x,y\right) \)がいずれも命題関数であるとき、以下の式\begin{equation*}\left( \left( \lnot P\left( x\right) \right) \rightarrow \left( Q\left(
y\right) \vee \left( \lnot R\left( x,y\right) \right) \right) \right)
\end{equation*}は論理式でしょうか。論理式である場合には括弧も外してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(論理式)
\(P\left( x\right) \)が命題関数であるとき、以下の式\begin{equation*}\left( P\left( y\right) \vee \left( \forall x\in X\right) \right)
\end{equation*}は論理式でしょうか。論理式である場合には括弧も外してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(論理式)
\(P\left( x\right) ,Q\left( y\right) \)がともに命題関数であるとき、以下の式\begin{equation*}\left( \exists x\in X:\left( Q\left( y\right) \vee \left( \lnot R\left(
x,y\right) \right) \right) \wedge \left( \forall y\in Y:Q\left( y\right)
\right) \right)
\end{equation*}は論理式でしょうか。論理式である場合には括弧も外してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(論理式)
\(P\left( x\right) ,Q\left( y\right) ,R\left( x,y\right) \)がいずれも命題関数であるとき、以下の式\begin{equation*}\left( P\left( x\right) \wedge Q\left( y\right) \vee R\left( x,y\right)
\right)
\end{equation*}は論理式でしょうか。論理式である場合には括弧も外してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(部分論理式)
命題関数\(P\left( x\right) ,Q\left( x,y\right) \)に関する以下の論理式\begin{equation*}P\left( x\right) \leftrightarrow \lnot \left( \lnot Q\left( x,y\right)
\right)
\end{equation*}の部分論理式をすべて特定してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(部分論理式)
命題関数\(P\left( x\right) ,Q\left( y\right) ,R\left(x,y\right) \)に関する以下の論理式\begin{equation*}\lnot P\left( x\right) \rightarrow \left( Q\left( y\right) \vee \lnot
R\left( x,y\right) \right)
\end{equation*}の部分論理式をすべて特定してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(部分論理式)
命題関数\(Q\left( y\right) ,R\left( x,y\right) \)に関する以下の論理式\begin{equation*}\exists x\in X:\left( Q\left( y\right) \vee \lnot R\left( x,y\right) \right)
\wedge \forall y\in Y:Q\left( y\right)
\end{equation*}の部分論理式をすべて特定してください。

解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

Mailで保存
Xで共有

質問とコメント

プレミアム会員専用コンテンツです

会員登録

有料のプレミアム会員であれば、質問やコメントの投稿と閲覧、プレミアムコンテンツ(命題の証明や演習問題とその解答)へのアクセスなどが可能になります。

ワイズのユーザーは年齢・性別・学歴・社会的立場などとは関係なく「学ぶ人」として対等であり、お互いを人格として尊重することが求められます。ユーザーが快適かつ安心して「学ぶ」ことに集中できる環境を整備するため、広告やスパム投稿、他のユーザーを貶めたり威圧する発言、学んでいる内容とは関係のない不毛な議論などはブロックすることになっています。詳細はガイドラインをご覧ください。

誤字脱字、リンク切れ、内容の誤りを発見した場合にはコメントに投稿するのではなく、以下のフォームからご連絡をお願い致します。

プレミアム会員専用コンテンツです
ログイン】【会員登録