教材一覧
LATEST MATERIALS

経済学の最新教材

事後均衡と支配戦略均衡の関係

ベイジアンゲームにおいて事後均衡は支配戦略均衡でもありますが、その逆は成立するとは限りません。ただ、私的価値モデルにおいては、事後均衡と支配戦略均衡は一致します。

純粋戦略事後均衡

ベイジアンゲームにおいて他のプレイヤーたちの純粋戦略に直面したプレイヤーがある純粋戦略を選ぶ場合、自身のタイプや他のプレイヤーたちのタイプによらず利得を最大化できる場合、そのような純粋戦略を事後最適反応と呼びます。事後最適反応の組を事後均衡と呼びます。

支配純粋戦略均衡

ベイジアンゲームにおいてプレイヤーがある純粋戦略を選ぶとき、自身を含めた全員のタイプや他のプレイヤーたちの行動、信念に関わらず利得を常に最大化できるならば、そのような戦略を支配純粋戦略と呼びます。支配純粋戦略の組を支配純粋戦略均衡と呼びます。

中間期待利得とベイジアン仮説

不完備情報の静学ゲームを表現するベイジアンゲームに直面したそれぞれのプレイヤーは、自身のタイプと信念にもとづいて他のプレイヤーたちのタイプを予想し、その予想から算出される中間期待利得を最大化するような純粋戦略を採用するものと仮定します。

信念

ベイジアンゲームにおいて不確実な状況下で意思決定を迫られるプレイヤーは、自身のそれぞれのタイプに対して、その場合に自分が直面し得る状態ゲームがそれぞれどの程度の確率で起こりえるか主観的に定めた上で、その予想にもとづいて意思決定を行うものとします。

純粋戦略

不完備情報の静学ゲームをベイジアンゲームとして表現したとき、プレイヤーによる意思決定は純粋戦略と呼ばれる概念として定式化されます。プレイヤーの純粋戦略とは、自身のそれぞれのタイプに対して行動を1つずつ定める行動計画です。

私的価値モデル

不完備情報の静学ゲームをベイジアンゲームとして表現するとき、すべてのプレイヤーの利得関数が自身のタイプのみに依存し、他のプレイヤーのタイプに依存しないものと仮定する場合には、そのようなモデルを私的価値モデルと呼びます。

ベイジアンゲーム

不完備情報の静学ゲームを記述するためにはプレイヤー、行動、情報、結果、利得などをそれぞれ具体的に特定する必要があります。それらの要素を記述する方法はいくつか存在しますが、ここではベイジアンゲームと呼ばれるモデルについて解説します。

支出最小化問題の内点解

支出最小化問題の解においてすべての商品の補償需要が正の実数であるとき、そのような解を内点解と呼びます。内点解において任意の2つの商品の間の限界代替率と相対価格は一致します。

支出最小化問題の解法

クーンタッカー条件を満たす消費ベクトルが支出最小化問題の解であるための必要条件や十分条件を明らかにした上で、支出最小化問題の解を求める具体的な手順について解説します。

補償需要における非超過効用

効用関数が連続関数である場合、支出最小化問題の解において消費者は目標効用水準に等しい効用を得ることが保証されます。これは効用最大化問題におけるワルラスの法則に相当する条件です。

補償需要関数の0次同次性

ヒックスの補償需要対応(補償需要関数)は価格ベクトルに関して0次同次です。つまり、すべての商品の価格を同じ割合で増加させても支出最小化問題の解集合は変化しません。

ヒックスの補償需要関数

消費者が直面する支出最小化問題は価格ベクトルと目標となる効用水準に応じて変化します。そこで、価格ベクトルと目標効用水準のそれぞれの組に対して、そのときの支出最小化問題の解集合を定める対応をヒックスの補償需要対応(補償需要関数)と呼びます。

支出最小化問題の制約条件

支出最小化問題にはそのままではベルジュの最大値定理を適用できないため、一般性を失わない形で、支出最小化問題をベルジュの最大値定理が適用可能な形へ変換します。

支出最小化問題

価格ベクトルと目標となる効用水準が与えられたとき、目標水準以上の効用をもたらす消費ベクトルの中から支出を最小化するようなものを特定することを支出最小化問題と呼びます。

ドブリューの定理(効用関数の存在条件)

消費集合が凸集合であるようなユークリッド空間の部分集合であるとともに、選好関係が合理性(完備性および推移性)と連続性を満たす場合、その選好関係を表す効用関数が必ず存在します。これをドブリューの定理と呼びます。

可算集合上の効用関数の存在条件

消費集合が可算集合であり、なおかつ消費集合上に定義された選好関係が合理性の仮定(完備性および推移性)を満たす場合には、その選好関係を表す効用関数が存在するとともに、そのような関数を具体的に構成することができます。

有限集合上の効用関数の存在条件

消費集合が有限集合であり、なおかつ消費集合上に定義された選好関係が合理性の仮定(完備性および推移性)を満たす場合には、その選好関係を表す効用関数が存在するとともに、そのような関数を具体的に構成することができます。

コブ・ダグラス型効用関数

コブ・ダグラス型効用関数と呼ばれるタイプの効用関数について解説した上で、消費者の選好がコブ・ダグラス型効用関数として表現される場合の効用最大化問題を分析し、その場合の需要関数を導出します。

予算対応の0次同次性

すべての商品の価格と所得が同じ割合で増加する場合には、その変化の前後において、予算制約を満たす消費ベクトルからなる集合、すなわち予算集合は変化しません。予算対応が満たす以上の性質を0次同次性と呼びます。関連してニュメレール(価値尺度財)についても解説します。

予算対応の連続性

予算対応が上半連続かつ下半連続である場合、すなわち連続対応である場合には、消費者が直面する最適化問題を解く際にベルジュの最大値定理を利用できるため、様々な望ましい性質を導くことができます。

予算集合のコンパクト性

消費者理論では予算集合がコンパクト集合であることを仮定することがあります。この仮定には、消費者が直面する最適化問題に解が存在することを保証する役割があります。

ワルラスの需要関数

価格ベクトルと所得のそれぞれの組に対して、そこでの効用最大化問題の解に相当する消費ベクトルを1つずつ定める関数をワルラスの需要関数と呼びます。ここでは需要関数が存在するための条件を紹介します。

効用最大化問題

消費者は予算集合に属する消費ベクトルの中から、自身の選好(効用関数)に照らし合わせて最も望ましい消費ベクトルを選ぶものと仮定します。このような仮定のもとで、消費者が直面する最適化問題を選好最大化問題(効用最大化問題)と呼びます。

演習問題:支配される戦略の逐次消去

本節では支配される戦略の逐次消去と呼ばれる均衡概念について学びました。演習問題を通じて理解度を確認してください。次節からはナッシュ均衡について解説します。

命題の証明:支配される戦略の逐次消去

本節では完備情報の静学ゲームにおいてプレイヤーが混合戦略を採用する状況を戦略型ゲームの混合拡張というモデルによって表現しました。演習問題を通じて理解度を確認してください。次節からはナッシュ均衡について解説します。

命題の証明:ナッシュ均衡

本節では完備情報の静学ゲームの均衡概念であるナッシュ均衡について学びました。本文中に登場した命題の証明を確認してください。

ベルトラン競争とカルテル

複占市場のプレイヤーである両企業にとって最良の結果は、カルテルを結んで独占均衡価格を維持することです。しかし、実際にはベルトラン競争(価格競争)を行うことが支配戦略均衡であるため、両社にとって効率的な結果が実現しません。

ベルトランのパラドクス

複占市場のような不完全競争市場であっても、そこでベルトラン競争が行われる場合には完全競争市場と同様に社会的余剰が最大化されます。これをベルトランのパラドクスと呼びます。

ベルトラン競争

同質財を供給する複占市場における企業間の価格競争をモデル化したゲームをベルトラン競争と呼び、ベルトラン競争におけるナッシュ均衡をベルトラン均衡と呼びます。

非対称的な利得構造を持つ囚人のジレンマ

これまではプレイヤーたちが同一の利得関数を持つ囚人のジレンマについて考えてきましたが、状況を少し一般化して、プレイヤーたちが異なる利得関数を持つ場合の囚人のジレンマについて考えます。

トップ・トレーディング・サイクルメカニズム

分割財の交換経済における代表的なメカニズムであるトップ・トレーディング・サイクルメカニズム(トップ・トレーディング・サイクルアルゴリズム)とはどのようなものであるか、具体例とともに解説するとともに、このメカニズムが備える望ましい性質を紹介します。

競争均衡

分割財の交換経済において便宜的に価格体系を導入したとき、配分と価格ベクトルの組が予算制約条件と選好最大化条件を満たすのであれば、そのような組を競争均衡と呼びます。また、競争的な配分を常に選び取るメカニズムを競争均衡メカニズムと呼びます。

安定性

プレイヤーたちが商品を交換することによりコア配分が実現した後においても、その配分が依然としてコアであり続けるのであれば、そのような配分を安定的な配分と呼びます。また、安定的な配分を常に選び取るメカニズムを安定メカニズムと呼びます。

コア選択

ある配分を出発点に、そこからプレイヤーのグループ(提携)が内部で商品を交換することでグループ内でのパレート改善が可能である場合、その配分はその提携によってブロックされると言います。また、いかなる提携によってもブロックされない配分をコアと呼び、コアを常に選び取るメカニズムをコア選択メカニズムと呼びます。

パレート効率性

ある配分を出発点に、そこからさらに誰かの満足度を高めようとすると他の人の犠牲が伴うような状態であるとき、その配分はパレート効率的であると言います。また、パレート効率的な配分を常に選び取るメカニズムをパレート効率的なメカニズムと呼びます。

個人合理性

非分割財の交換経済におけるメカニズムが与えられたとき、プレイヤーたちが申告する選好の内容に関わらず、メカニズムが定める配分が任意のプレイヤーにとって初期配分以上に望ましいことが保証されるならば、そのようなメカニズムは個人合理性を満たすと言います。

誘因両立性

非分割財の交換経済におけるインセンティブの問題を解消するためには、すべてのプレイヤーが自身の選好を正直に表明することが均衡になるようなメカニズムを設計する必要があります。そのような性質を満たすメカニズムを誘因両立的なメカニズムと呼びます。ここでは、誘因両立性の中でも、耐戦略性と事後均衡誘因両立性について解説します。

メカニズム

非分割財の交換経済ではプレイヤーの間に情報の非対称性が存在するため、インセンティブの問題が発生する可能性があります。そのような問題を解決するために、マッチメイカーは適切な資源配分ルール、すなわちメカニズムを設計しようとします。

非分割財の交換経済

商品を1つずつ所有している複数のプレイヤーが、何らかのルールにもとづいて商品を交換しようとしている状況を非分割財の交換経済と呼ばれるモデルとして定式化します。このような問題はシャプレー・スカーフ経済、住宅市場モデル、住宅交換モデルなどとも呼ばれます。

ナッシュの定理

有限な戦略型ゲームの混合拡張には必ず混合戦略ナッシュ均衡が存在します。これをナッシュの定理と呼びます。角谷の不動点定理を用いてナッシュの定理を証明します。

混合戦略ナッシュ均衡

戦略型ゲームの混合拡張においてプレイヤーたちの混合戦略の組に注目したときに、その組を構成する混合戦略がお互いに最適反応になっているならば、その組を混合戦略ナッシュ均衡と呼びます。

囚人のジレンマとしての広告競争

完全代替財を定価で販売する企業の間で行われる広告競争は囚人のジレンマとしての側面を持っていることを解説した上で、そこでのナッシュ均衡を求めます。

囚人のジレンマとしての価格競争

完全代替財を販売する企業の間で行われる価格競争は囚人のジレンマとしての側面を持っていることを解説した上で、そこでのナッシュ均衡を求めます。

囚人のジレンマとしての軍拡競争

冷戦期に行われた米ソ間の軍拡競争は囚人のジレンマとしての側面を持っていることを解説した上で、そこでのナッシュ均衡を求めます。

美人投票(平均の2/3の推測)

プレイヤーたちが0から100までの実数を1つずつ投票し、全体の平均の2/3に最も近い数字を投票したプレイヤーが勝者として賞金を得るゲームを美人投票や平均の2/3の推測などと呼びます。美人投票をゲームとして定式化した上で、そのナッシュ均衡を求めます。

n人囚人のジレンマ

囚人のジレンマは2人ゲームですが、これを3人以上に拡張するとどのようなモデルになるでしょうか。n人囚人のジレンマと呼ばれるゲームについて解説します。

囚人のジレンマ

囚人のジレンマとして広く知られるゲームの最も基本的なモデルを紹介し、それを戦略型ゲームとして定式化した上で、その均衡を分析します。

混合戦略によって強支配される戦略の逐次消去

与えられたゲームにおいてそれぞれのプレイヤーが何らかの混合戦略によって強支配される混合戦略を持つ場合、それをプレイヤーの混合戦略集合から消去することを通じてプレイヤーたちが選択し得る戦略の組を絞り込む手法を混合戦略によって強支配される戦略の逐次消去と呼びます。

純粋戦略によって弱支配される戦略の逐次消去

与えられたゲームにおいてそれぞれのプレイヤーが何らかの純粋戦略によって弱支配される純粋戦略を持つ場合、それをプレイヤーの純粋戦略集合から消去することを通じてプレイヤーたちが選択し得る戦略の組を絞り込む手法を純粋戦略によって弱支配される戦略の逐次消去と呼びます。

純粋戦略によって強支配される戦略の逐次消去

与えられたゲームにおいてそれぞれのプレイヤーが何らかの純粋戦略によって強支配される純粋戦略を持つ場合、それをプレイヤーの純粋戦略集合から消去することを通じてプレイヤーたちが選択し得る戦略の組を絞り込む手法を純粋戦略によって強支配される戦略の逐次消去と呼びます。

弱支配混合戦略均衡

あるプレイヤーの混合戦略が別の混合戦略を弱支配すること、弱支配混合戦略、弱支配混合戦略均衡などについて解説します。

強支配混合戦略均衡

あるプレイヤーの混合戦略が別の混合戦略を強支配すること、強支配混合戦略、強支配戦略均衡などについて解説します。

弱支配純粋戦略均衡

あるプレイヤーの純粋戦略が別の純粋戦略を弱支配すること、弱支配純粋戦略、弱支配純粋戦略均衡などについて解説します。

強支配純粋戦略均衡

あるプレイヤーの純粋戦略が別の純粋戦略を強支配すること、強支配純粋戦略、強支配純粋戦略均衡などについて解説します。

ゲームとは何か?

ゲーム理論とは戦略的相互依存性が存在する状況について研究する学問です。戦略的相互依存性が存在する状況とは、複数の主体が関わり合う場面において、各々が最終的に直面する結果が自分の行動だけによって決まるのではなく、他の主体の行動にも依存するような状況のことです。

所得の限界効用

効用最大化問題の解が与えられたとき、そこから所得を限界的に増やして何らかの商品の支出に振り分けたときに得られる効用の増分を所得の限界効用と呼びます。所得の限界効用は間接効用関数を所得について偏微分することによっても得られます。

効用最大化問題の端点解

効用最大化問題に解において消費者が所得をすべて使い切るとともに、少なくとも1つの商品の需要がゼロである場合、そのような解を端点解と呼びます。端点解において限界代替率と相対価格は一致するとは限りません。

ワイズの理念とサービス内容。

REGISTER

会員登録

プレミアム会員登録はこちらから。

CONTACT

お問い合わせ

メールフォームをご利用ください。