WIIS

LATEST MATERIALS

数学 | 最新の教材

カイ二乗分布

カイ二乗分布

有限n個の独立な確率変数がいずれも標準正規分布にしたがう場合、それらの二乗どうしの和として定義される確率変数は自由度nのカイ二乗分布にしたがうと言います。カイ二乗分布は統計において重要な役割を果たします。

Read More »
ベルヌーイ分布

標本平均とその標本分布

母集団分布から抽出されたランダムサンプルどうしの算術平均として定義される確率変数を標本平均と呼びます。標本平均の期待値は母平均と一致し、標本平均の分散は母分散を標本の大きさで割った値と一致します。

Read More »
ベルヌーイ分布

標本和とその標本分布

母集団分布から抽出されたランダムサンプルどうしの和として定義される確率変数を標本和と呼びます。標本和の期待値は標本の大きさと母平均の積と一致し、標本和の分散は標本の大きさと母分散の積と一致します。

Read More »
パラメトリック族

統計量と標本分布

母集団から抽出した標本が含む情報を何らかの形で要約した指標を統計量と呼びます。統計量がしたがう確率分布を標本分布と呼びます。

Read More »
正項級数

正項級数の項を加える順序

正項級数が収束する場合、項を加える順序を任意の形で変えても、新たに得られる正項級数はもとの級数の和と同じ和へ収束します。また、正項級数が発散する場合、項を加える順序を任意の形で変えても、新たに得られる正項級数は発散します。

Read More »
実数ベキ関数

実数ベキ関数の極限

無理数を含めた実数を指数として持つベキ関数について、その極限、片側極限、および無限大における極限を求める方法を解説します。

Read More »
線形写像

線形写像の加法と表現行列の加法

線形写像どうしの加法を定義した上で、その基本的な性質について解説します。また、線形写像どうし加法と、線形写像の表現行列どうしの加法の関係について解説します。

Read More »
同型なベクトル空間

同型写像のもとで不変な性質

ベクトル空間の部分集合Xが満たすある性質Pに注目したとき、集合Xを同型写像によって別のベクトル空間へ写した場合にも、その像が性質Pを依然として満たすのであれば、そのような性質Pは同型写像のもとで不変であると言います。

Read More »
座標ベクトル

線形写像の表現行列と行列表現

実ベクトル空間の間に定義された線形写像を行列を用いて表現できるように、一般のベクトル空間の間に定義された線形写像についても、ベクトル空間の基底を指定すれば、それを行列を用いて表現できます。

Read More »
値域

線形写像の次元定理(線形写像の基本定理)

線形写像の定義域であるベクトル空間が有限次元を持つ場合、その線形写像の核と値域もまた有限次元になるとともに、定義域の次元は、核の次元と値域の次元の和と一致します。これを次元定理や線形写像の基本定理と呼びます。

Read More »
ゼロ空間

線形写像の核(ゼロ空間)

線形写像によるゼロベクトルの逆像をその線形写像の核やゼロ空間などと呼びます。線形写像の核は線形写像の定義域であるベクトル空間の部分空間です。

Read More »
ポアソン分布

二項分布とポアソン分布の関係

二項分布の確率密度関数には組合せの数が関与するため、試行パラメータnが大きい場合には計算が困難です。試行パラメータnが十分大きく成功パラメータpが十分小さい場合、二項分布はポアソン分布によって近似できるため、計算が容易になります。

Read More »
回転変換行列

回転変換行列

平面上に存在する点を原点を中心に回転したり、空間上に存在する点を特定の軸を回転軸にして回転する行列変形について解説します。

Read More »
触点

距離空間における触点・閉包

距離空間の部分集合Aが与えられたとき、点aの任意の近傍がAと交わるならば、aをAの触点と呼びます。また、Aのすべての触点からなる集合をAの閉包と呼びます。

Read More »
位相同型

同相写像・位相同型(同相)な距離空間

距離空間Xから距離空間Yへの連続な全単射fの逆写像もまた連続である場合、もとの写像fを同相写像と呼びます。2つの距離空間の間に同相写像が存在する場合、それらの距離空間は位相同型(同相)であると言います。

Read More »
写像

距離空間上の写像の連続性

距離空間上に定義された写像が定義域上の集積点において連続であることの意味を定義します。また、定義域上の孤立点において写像は連続であるものと定めます。

Read More »
写像

点列を用いた写像の収束判定

距離空間上に定義された写像が収束することをイプシロン・デルタ論法を用いて証明するのは困難です。写像が収束する・収束しないことを点列を用いて判定する方法を解説します。

Read More »
等長

等長な距離空間

距離空間X上に存在する2つの点を写像fを通じて距離空間Y上の点に変換しても2つの点の間の距離が変わらない場合、fを等長写像と呼びます。また、全単射であるような等長写像が存在する場合、XとYは距離空間として等長であると言います。

Read More »
ニュートン法

ニュートン法とその理論的根拠

ニュートン法とは方程式の近似解を求めるためのアルゴリズムです。ニュートン法の手順を解説するとともに、ニュートン法が有効であるための条件およびその根拠について解説します。

Read More »
コーシー列

実数空間の完備部分集合

実数空間Rの非空な部分集合Aの要素を項として持つ任意のコーシー列の極限がAの要素になる場合、Aを完備な部分集合と呼びます。実数空間の部分集合が完備であることと、その集合が閉集合であることは必要十分です。

Read More »

ワイズの理念とサービス内容。

REGISTER

プレミアム会員登録はこちらから。

CONTACT

メールフォームをご利用ください。