教材一覧
教材一覧
教材検索
LATEST MATERIALS

数学 | 最新の教材

最大値・最小値

多変数関数の局所最適解

多変数関数の値を最大化するような点が定義域上に存在しない場合でも、変数がとり得る値を限定することにより、その範囲内において関数の値を最大化するような点が存在する状況は起こり得ます。そのような点を極大点や局所的最大点と呼びます。また、関数が極大点に対して定める値を極大値や大域的最大値と呼びます。

Read More »
最大値・最小値

多変数関数の大域的最適解

多変数関数の値を最大化するような点が定義域上に存在する場合、そのような点を最大点や大域的最大点と呼びます。また、多変数関数が最大点に対して定める値を最大値や大域的最大値と呼びます。

Read More »
偏微分

多変数関数の全微分と偏微分の関係

多変数関数が全微分可能である場合には偏微分可能であることが保証される一方、その逆は成り立つとは限りません。ただ、多変数関数が連続微分可能である場合には全微分可能であることが保証される一方、その逆は成り立つとは限りません。

Read More »
全微分

多変数関数の全微分

多変数関数が偏微分可能もしくは方向微分可能である場合においても連続であるとは限りません。微分可能性から連続性を導くためには新たな微分概念が必要であるため、それを全微分と呼ばれる概念として定式化します。

Read More »
凸関数・凹関数

多変数の狭義凸関数・狭義凹関数

定義域がユークリッド空間上の凸集合であるとともに、そのグラフが下に凸であるような関数を狭義凸関数と呼びます。また、グラフが上に凸であるよう関数を狭義凹関数と呼びます。

Read More »
凸関数・凹関数

多変数の凸関数・凹関数

定義域がユークリッド空間上の凸集合であるとともに、そのグラフが平面もしくは下に凸であるような関数を凸関数と呼びます。また、グラフが平面もしくは上に凸であるよう関数を凹関数と呼びます。

Read More »
ヘッセ行列

ヘッセ行列

多変数関数が任意の2つの変数の組み合わせに関して2階偏微分可能である場合には、2階偏微分係数を成分として持つ正方行列が定義可能です。これをヘッセ行列と呼びます。

Read More »
偏微分

高階の偏微分

多変数関数の偏導関数が偏微分可能である場合には偏導関数の偏導関数が得られますが、これを2階の偏導関数と呼びます。同様に、3階の偏導関数、4階の偏導関数なども定義可能です。これらを高階の偏導関数と呼びます。

Read More »
凸関数・凹関数

微分可能な1変数の凸関数・凹関数

微分可能な関数が凸関数であることは、導関数が単調増加関数であることと必要十分です。また、微分可能な関数が凹関数であることは、導関数が単調減少関数であることと必要十分です。

Read More »
凸関数・凹関数

1変数の凸関数・凹関数

定義域が区間であるとともに、そのグラフが直線もしくは谷型の曲線になるような関数を凸関数と呼び、グラフが直線もしくは山型の曲線になるような関数を凹関数と呼びます。

Read More »
導集合

点列を用いた集積点(極限点)の判定

ユークリッド空間の部分集合 A および点 a が与えられたとき、A の点を項とするとともに、すべての項が a とは異なり、なおかつ a に収束する点列が存在することは、a が A の集積点(極限点)であるための必要十分条件です。

Read More »
触点

点列を用いた触点の判定

ユークリッド空間の部分集合 A および点 a が与えられたとき、a に収束する A 上の点列が存在することは、a が A の触点であるための必要十分条件です。

Read More »
カントールの縮小区間定理

カントールの縮小区間定理の一般化

カントールの縮小区間定理は入れ子構造の閉区間列に関する命題ですが、同様の主張が入れ子構造のコンパクト集合列に関して成り立ちます。つまり、入れ子構造のコンパクト集合列の共通部分は非空になることが保証されます。

Read More »
正弦関数

正弦関数(sin関数)の微分

正弦関数は数直線上の任意の点において微分可能であるとともに、その導関数は余弦関数と一致します。したがって、任意の微分可能な関数と正弦関数の合成関数もまた微分可能です。

Read More »
対数関数

自然対数関数の微分

自然対数関数は定義域上の任意の点において微分可能であることを示すとともに、その導関数を求める方法を解説します。

Read More »
指数関数

一般の指数関数の微分

自然指数関数に限定されない一般の指数関数もまた全区間上で微分可能であることを示すとともに、その導関数を求める方法を解説します。

Read More »
スカラー場

多変数の定数関数

入力するベクトルとは関係なく常に同じ実数を値として返すスカラー場(多変数関数)を定数関数と呼びます。

Read More »

ワイズの理念とサービス内容。

REGISTER

プレミアム会員登録はこちらから。

CONTACT

メールフォームをご利用ください。