教材一覧
教材一覧
教材検索
LATEST MATERIALS

数学 | 最新の教材

ヤコビ行列

多変数ベクトル値関数の全微分と偏微分の関係

多変数関数が全微分可能である場合には偏微分可能であることが保証される一方、その逆は成り立つとは限りません。ただ、多変数関数が連続微分可能である場合には全微分可能であることが保証される一方、その逆は成り立つとは限りません。

Read More »
ほとんどいたるところ

零事象(ほとんど確実な事象)

可測事象の確率が0である場合、そのような事象を零事象と呼びます。また、可測事象の確率が1である場合、そのような事象をほぼ確実な事象と呼びます。

Read More »
各点収束

各点収束する確率変数列

関数変数列が各点収束することの意味を定義するとともに、その場合の確率変数列の極限、すなわち極限関数を具体的に特定する方法を解説します。

Read More »
高階の偏微分

多変数ベクトル値関数の高階偏微分

多変数のベクトル値関数(ベクトル場)の偏導関数が偏微分可能である場合には偏導関数の偏導関数が得られますが、これを2階の偏導関数と呼びます。同様に、3階の偏導関数、4階の偏導関数なども定義可能です。これらを高階の偏導関数と呼びます。

Read More »
一様収束

一様収束する関数列

関数列が一様収束することの意味を定義するとともに、関数列が一様収束すること、ないし一様収束しないことを判定する方法について解説します。

Read More »
各点収束

各点収束する関数列

関数列が各点収束することの意味を定義するとともに、その場合の関数列の極限、すなわち極限関数を具体的に特定する方法を解説します。

Read More »
関数列

関数列の定義

定義域を共有する無限個の関数を順番に並べたものを関数列と呼びます。関数列はすべての自然数からなる集合を定義域とし、定義域を共有するすべての関数からなる集合を終集合とする写像として定式化することもできます。

Read More »
ヤコビ行列

ヤコビ行列

多変数のベクトル値関数(ベクトル場)が定義域上の点においてすべての変数に関して偏微分可能である場合、その点におけるそれぞれの成分関数のそれぞれの変数に関する偏微分係数を成分とする行列が存在します。これをヤコビ行列と呼びます。

Read More »
不定形

不定形の極限(∞^0型)

関数の関数べき乗として定義される関数について、底に相当する関数が無限大へ発散する一方で指数に相当する関数が0へ収束する場合、もとの関数の極限を∞0型の不定形と呼びます。

Read More »
不定形

不定形の極限(0^0型)

関数の関数べき乗として定義される関数について、底に相当する関数と指数に相当する関数がともに0へ収束する場合、もとの関数の極限を00型の不定形と呼びます。

Read More »
外点・外部

距離空間における境界点・境界

距離空間の部分集合Aが与えられたとき、点aの任意の近傍がAとAの補集合の双方と交わるならば、aをAの境界点と呼びます。また、Aのすべての境界点からなる集合をAの境界と呼びます。

Read More »
外点・外部

距離空間における外点・外部

距離空間Xの部分集合Aが与えられたとき、Xの点aを中心とする開近傍の中にAの補集合の部分集合になるものが存在するならば、aをAの外点と呼びます。また、Aのすべての外点を集めてできる集合をAの外部と呼びます。

Read More »
不定形

不定形の極限(1^∞型)

関数の関数べき乗として定義される関数について、底に相当する関数が1へ収束する一方で指数に相当する関数が無限大へ発散する場合、もとの関数の極限を1^∞型の不定形と呼びます。

Read More »
ネイピア数

ネイピア数(自然対数の底)

ネイピア数(オイラー数、自然対数の定)を数列の極限として定義するとともに、それが複利で元本を運用する場合の元本の増加率の極限として解釈可能であることを示します。

Read More »
不定形

不定形の極限(∞-∞型)

2つの関数の差として定義されている関数について、2つの関数がともに正の無限大へ発散する場合、もしくはともに負の無限大へ発散する場合、もとの関数の極限を∞-∞型の不定形と呼びます。不定形の極限は有限な実数として定まる場合とそうでない場合の両方が起こり得ます。

Read More »
不定形

不定形の極限(0×∞型)

2つの関数の積として定義されている関数について、一方がゼロへ収束する一方で他方が無限大へ発散する場合、もとの関数の極限を0×∞型の不定形と呼びます。不定形の極限は有限な実数として定まる場合とそうでない場合の両方が起こり得ます。

Read More »
不定形

不定形の極限(∞/∞型)

2つの関数の商として定義されている関数について、分子の関数と分母の関数がともに無限大へ発散する場合、もとの関数の極限を∞/∞型の不定形と呼びます。不定形の極限は有限な実数として定まる場合とそうでない場合の両方が起こり得ます。

Read More »
不定形

不定形の極限(0/0型)

2つの関数の商として定義されている関数について、分子の関数と分母の関数がともにゼロへ収束する場合、もとの関数の極限を0/0型の不定形と呼びます。不定形の極限は有限な実数として定まる場合とそうでない場合の両方が起こり得ます。

Read More »
内点・内部

距離空間における内点・内部

距離空間Xの部分集合Aが与えられたとき、Xの点aを中心とする開近傍の中にAの部分集合になるものが存在するならば、aをAの内点と呼びます。また、Aのすべての内点を集めてできる集合をAの内部と呼びます。

Read More »
開集合

距離空間における開集合・開集合系

距離空間の部分集合Aが与えられたとき、Aのそれぞれの点に対して、その点を中心とする近傍の中にAの部分集合であるようなものが存在するならば、Aを距離空間上の開集合と呼びます。

Read More »
ポアソン分布

ポアソン分布

単位時間内に何らかの出来事が起こる回数を表す離散型の確率変数の確率分布をポアソン分布と呼びます。ポアソン分布を定義するとともに、その基本的な性質について解説します。

Read More »

ワイズの理念とサービス内容。

REGISTER

プレミアム会員登録はこちらから。

CONTACT

メールフォームをご利用ください。