WIIS

教材一覧
教材一覧
教材検索
LATEST MATERIALS

最新の教材

ホテリングモデル

ホテリングの立地モデル(空間競争モデル)

商品の特性に対する消費者による好みの違いが線分上の分布として表現されるという想定のもと、ライバル関係にある2つの企業が商品の水平的差別化を行う状況をホテリングモデルとして定式化しましたが、同様のモデルを用いて企業間の商業立地を通じた競争を分析することができます。

Read More »
ホテリングモデル

ホテリングモデル(最小差別化原理)

2つの企業が商品を同一価格で販売している状況では、消費者は自分の好みに近い特性を持つ商品を購入します。消費者の好みが一様に分布している状況においては、均衡においてそれぞれの企業が供給する製品の特性が完全に一致し、結果として、製品差別化が行われないことになります。

Read More »
ナッシュの要求ゲーム

ナッシュの要求ゲーム(1ドルの分配ゲーム)

資源量が所与である状況において2人のプレイヤーが取り分を同時に要求し、2人による要求量の和が資源量以下であれば各々は要求通りの取り分を得られる一方、要求量の和が総資源量を上回る場合には何も得られない、という構造のゲームをナッシュの要求ゲームと呼びます。

Read More »
リスク支配

鹿狩りゲーム:調整ゲームの例

調整ゲームの1つの典型例である鹿狩りゲーム(stag hunt)を定式化した上で、ナッシュ均衡を求めます。鹿狩りゲームでは複数均衡問題が発生するとともに、利得支配とリスク支配の間にトレードオフが成立します。

Read More »
ナッシュ均衡

複数均衡問題とリスク支配

戦略型ゲームに複数のナッシュ均衡が存在するとともに、ある均衡からのプレイヤーたちの離脱損失の積が、別の均衡からのプレイヤーたちの離脱損失の積よりも大きい場合、前者の均衡は後者の均衡をリスク支配すると言います。

Read More »
ナッシュ均衡

複数均衡問題とフォーカルポイント

プレイヤーたちが相談できない状況において何らかの選択を迫られた場合に、ある選択肢が他の選択肢よりも注意を引くものであるならば、それをフォーカルポイントと呼びます。ゲームに複数のナッシュ均衡が存在する場合、その中の1つがフォーカルポイントであれば、プレイヤーたちはそれをプレーすることが予想されます。

Read More »
ナッシュ均衡

複数均衡の問題

戦略型ゲームに複数のナッシュ均衡が存在する場合、プレイヤーたちはその中のどれを実際にプレーすることになるか必ずしも明らかではありません。これを複数均衡の問題や均衡選択の問題などと呼びます。

Read More »
ナッシュ均衡

ナッシュ均衡と社会的慣習

プレイヤーをランダムに変えて同じゲームを繰り返しプレーした結果、ある時点からプレイヤーたちが一定の戦略をプレーするよう状況が安定するのであれば、それは社会的慣習が形成されたことを意味します。社会的慣習が形成される場合、それはナッシュ均衡です。

Read More »
先験的確率

組合せとその個数

有限n個の要素を持つ集合からk個の要素を選べば、このk個の要素からなるもとの集合の部分集合が得られますが、これを組合せと呼びます。

Read More »
先験的確率

順列とその個数

有限n個の要素を持つ集合から1つずつ順番に、合計k個の要素を重複しない形で選んだ上で、このk個の要素を選んだ順番に並べることで得られる要素の列を順列と呼びます。

Read More »
準線型環境

組合せオークションの準線型環境

組合せオークションを記述する環境において、任意の入札者の利得関数が非外部性、準線型性、リスク中立性、私的価値の仮定を満たす場合、そのような環境を準線型環境と呼びます。

Read More »
先験的確率

数え上げに関する積の法則

複数の選択肢のグループから1つずつ選択する場合の選び方の数を求めるためには、それぞれのグループに含まれる選択肢の数を数え、それらの積をとります。これを積の法則と呼びます。

Read More »
先験的確率

数え上げに関する和の法則

何かを1つ選択する場合の選び方の数を求める際には、すべての選択肢を互いに交わらない複数のグループに分類した上で、それぞれのグループに含まれる選択肢の数を数え、それらの和をとります。これを和の法則と呼びます。

Read More »
分散

離散型確率変数の分散と標準偏差

離散型の確率変数がとり得るそれぞれの値に対して、その値と期待値の差の平方をとった上で、得られた平方の総和をとると分散と呼ばれる指標が得られます。分散の正の平方根を標準偏差と呼びます。

Read More »
1対1のマッチング問題

DAメカニズムのもとでの男女の利害の対立

1対1のマッチング問題(安定結婚問題)において安定性を追求する限りにおいて、男性求婚型DAメカニズムは男性にとって最良である一方で女性にとって最悪であり、逆に、女性求婚型DAメカニズムは女性にとって最良である一方で男性にとって最悪です。

Read More »
メカニズム

非分割財の交換問題における競争均衡メカニズム

分割財の交換問題(シャプレー・スカーフの住宅市場)に対して便宜的に価格体系を導入したとき、配分と価格ベクトルの組が予算制約条件と選好最大化条件を満たすのであれば、そのような組を競争均衡と呼びます。また、競争的な配分を常に選び取るメカニズムを競争均衡メカニズムと呼びます。

Read More »
安定メカニズム

非分割財の交換問題における安定メカニズム

非分割財の交換問題(シャプレー・スカーフの住宅市場)においてエージェントたちが商品を交換し狭義コアが実現した後、任意の提携が商品を再交換する動機を持たない場合、そのような狭義コアは安定的であると言います。安定的な狭義コアを常に選ぶメカニズムを配分メカニズムと呼びます。

Read More »
カントールの定理

カントールの定理と無限集合の濃度

任意の集合に対して、それよりも大きい濃度を持つ集合が必ず存在します。これをカントールの定理と呼びます。したがって、可算集合や連続体とは異なる無限集合が存在します。

Read More »
区間

連続体(連続体濃度)

実数空間と等しい濃度を持つ無限集合を連続体と呼びます。連続体濃度は可算濃度よりも大きい濃度です。実数空間上の任意の区間は連続体です。

Read More »
可算集合

高々可算集合

有限濃度よりも大きく可算濃度よりも小さい無限濃度は存在しません。つまり、可算濃度は最小の無限濃度です。そこで、有限集合と可算集合を総称して高々可算集合と呼びます。

Read More »
有限集合

有限集合の部分集合の濃度

有限集合Aの部分集合Bもまた有限集合であるとともに、Bの濃度はAの濃度以下です。また、有限集合Aの真部分集合Bもまた有限集合であるとともに、Bの濃度はAの濃度よりも小さいです。

Read More »
狭義全順序

集合の濃度の狭義大小関係

集合Aの濃度が集合Bの濃度以下であるともに両者の濃度が等しくない場合、Aの濃度はBの濃度よりも小さいと言います。濃度の狭義大小関係を二項関係とみなしたとき、これは非対称律、推移律および三分律を満たす狭義全順序関係です。

Read More »
全順序

集合の濃度の大小関係

集合Aから集合Bへの単射が存在する場合、Aの濃度はBの濃度以下であると言います。濃度の大小関係を二項関係とみなしたとき、これは反射律・反対称律・推移律・完備律を満たす全順序関係です。

Read More »
1対1のマッチング問題

1対1のマッチング問題(安定結婚問題)

2つのグループに分かれたプレイヤーたちを何らかのルールにもとづいてグループ間で1対1でマッチングさせる資源配分問題を1対1のマッチング問題(安定結婚問題)と呼ばれるモデルとして定式化します。

Read More »
コンドルセの逆説

非合理的な選好

完備性と推移性は常識的かつ無理のない仮定であるように思われますが、実際には、現実の様々な局面において消費者の選好が合理的ではないような状況は起こり得ます。コンドルセの逆説、フレーミング効果、ビュリダンのロバ(選択の壁)など、消費者の選好が合理性を満たさないような状況について解説します。

Read More »
正接関数

逆正接関数(arctan関数)の定義

正接関数(タンジェント関数)の定義域を適当な形で制限すれば全単射になるため、その逆関数である逆正接関数(アークタンジェント関数)を定義することができます。

Read More »
不連続点

関数の連続点と不連続点

関数が定義域上の点において連続であるとき、その点を連続点と呼びます。一方、関数が定義域上の点において連続ではないとき、その点を不連続点と呼びます。不連続点は第1種と第2種の2種類に分類され、さらに第1種の不連続点は除去可能な不連続点と跳躍不連続点に分類されます。

Read More »
ハッセ図

ハッセ図(有向グラフと順序)

有向グラフを用いることにより半順序集合を視覚的に表現できます。加えて、半順序の性質を利用することにより、有向グラフを簡略化したハッセ図と呼ばれる図を得ることができます。

Read More »
全順序

整列順序関係(整列集合)

全順序集合の任意の非空な部分集合が最小限を持つ場合、このような全順序集合を整列集合と呼びます。また、整列集合上に定義された全順序を整列関係と呼びます。

Read More »
上界・下界

順序部分集合の上界・下界

非空な順序部分集合の任意の要素以上の要素が順序集合上に存在する場合、その要素を上界と呼びます。また、非空な順序部分集合の任意の要素以下の要素が順序集合上に存在する場合、その要素を下界と呼びます。

Read More »
極大値・極小値

順序部分集合の極大元・極小元

非空な順序部分集合のある要素よりも大きい要素がその集合の中に存在しない場合、その要素を極大元と呼びます。また、非空な順序部分集合のある要素よりも小さい要素がその集合の中に存在しない場合、その要素を極小元と呼びます。

Read More »
最大値・最小値

順序部分集合の最大元・最小元

非空な順序部分集合のある要素が、他の任意の要素以上である場合、それを最大元と呼びます。また、非空な順序部分集合のある要素が、他の任意の要素以下である場合、それを最小元と呼びます。

Read More »
全順序

順序部分集合

順序集合A上に定義されている順序のもとで、Aの非空な部分集合Xが順序集合になっている場合、XをAの順序部分集合と呼びます。

Read More »
全順序

全順序と狭義全順序の関係

全順序から狭義全順序を生成する方法や、逆に、狭義全順序から全順序を生成する方法を解説するとともに、両者の間に成立する関係について解説します。

Read More »
狭義全順序

狭義全順序(狭義全順序集合)

非対称律、推移律、三分律を満たす二項関係、すなわち三分律を満たす狭義半順序を狭義全順序や狭義線型順序などと呼びます。狭義全順序を定義した上で、その具体例を提示します。

Read More »

ワイズの理念とサービス内容。

REGISTER

プレミアム会員登録はこちらから。

CONTACT

メールフォームをご利用ください。