WIIS

1変数関数の積分

単調関数のリーマン積分可能性

目次

Mailで保存
Xで共有

単調関数のリーマン積分可能性

これまでは有界な閉区間上に定義された有界な関数がリーマン積分可能であることの意味を定義するとともに、関数がリーマン積分可能であること、ないしリーマン積分可能ではないことを具体的に判定する方法について解説してきました。では、リーマン積分可能であることが保証されるような関数は存在するのでしょうか。

\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\begin{equation*}f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \end{equation*}が\(\left[ a,b\right] \)上において単調増加関数であるものとします。つまり、\begin{equation*}\forall x,x^{\prime }\in \left[ a,b\right] :\left[ x<x^{\prime }\Rightarrow
f\left( x\right) \leq f\left( x^{\prime }\right) \right] \end{equation*}が成り立つということです。このとき、\begin{equation*}
\forall x\in \left[ a,b\right] :f\left( a\right) \leq f\left( x\right) \leq
f\left( b\right)
\end{equation*}が成り立つため、\(f\)は\(\left[ a,b\right] \)上で有界であることが保証されます。したがって、\(f\)がリーマン積分可能であるか検討できますが、以上の条件を満たす関数\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能であることが保証されます。有界閉区間上に定義された単調増加関数はリーマン積分可能であるということです。

命題(単調増加関数の積分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)が単調増加関数であるならば、\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(単調増加関数の積分可能性)
関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)がそれぞれの\(x\in \left[ a,b\right] \)に対して定める値は、ある定数\(c\in \mathbb{R} \)を用いて、\begin{equation*}f\left( x\right) =c
\end{equation*}で表されるものとします。つまり、\(f\)は定数関数です。この関数\(f\)は\(\left[ a,b\right] \)上で単調増加であるため、先の命題より、\(f\)は\(\left[ a,b\right]\)上でリーマン積分可能です。
例(単調増加関数の積分可能性)
関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ a,b\right] \)に対して、\begin{equation*}f\left( x\right) =x
\end{equation*}を定めるものとします。この関数\(f\)は\(\left[ a,b\right]\)上で単調増加であるため、先の命題より、\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能です。
例(単調増加関数の積分可能性)
関数\(f:\mathbb{R} \supset \left[ 0,1\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ 0,1\right] \)に対して、\begin{equation*}f\left( x\right) =x^{2}
\end{equation*}を定めるものとします。この関数\(f\)は\(\left[ 0,1\right]\)上で単調増加であるため、先の命題より、\(f\)は\(\left[ 0,1\right] \)上でリーマン積分可能です。
例(狭義単調増加関数の積分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界な閉区間\(\left[ a,b\right] \)上に定義された関数\begin{equation*}f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \end{equation*}が\(\left[ a,b\right] \)上において狭義単調増加関数であるものとします。つまり、\begin{equation*}\forall x,x^{\prime }\in \left[ a,b\right] :\left[ x<x^{\prime }\Rightarrow
f\left( x\right) <f\left( x^{\prime }\right) \right] \end{equation*}が成り立つということです。狭義単調増加関数は単調増加関数であるため、先の命題より、\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能です。

単調減少関数についても同様の命題が成り立ちます。具体的には以下の通りです。

\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\begin{equation*}f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \end{equation*}が\(\left[ a,b\right] \)上において単調減少関数であるものとします。つまり、\begin{equation*}\forall x,x^{\prime }\in \left[ a,b\right] :\left[ x<x^{\prime }\Rightarrow
f\left( x\right) \geq f\left( x^{\prime }\right) \right] \end{equation*}が成り立つということです。このとき、\begin{equation*}
\forall x\in \left[ a,b\right] :f\left( a\right) \geq f\left( x\right) \geq
f\left( b\right)
\end{equation*}が成り立つため、\(f\)は\(\left[ a,b\right] \)上で有界であることが保証されます。したがって、\(f\)がリーマン積分可能であるか検討できますが、以上の条件を満たす関数\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能であることが保証されます。有界閉区間上に定義された単調減少関数はリーマン積分可能であるということです。

命題(単調減少関数の積分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)が単調減少関数であるならば、\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能である。
証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

例(単調減少関数の積分可能性)
関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)がそれぞれの\(x\in \left[ a,b\right] \)に対して定める値は、ある定数\(c\in \mathbb{R} \)を用いて、\begin{equation*}f\left( x\right) =c
\end{equation*}で表されるものとします。つまり、\(f\)は定数関数です。この関数\(f\)は\(\left[ a,b\right] \)上で単調減少であるため、先の命題より、\(f\)は\(\left[ a,b\right]\)上でリーマン積分可能です。
例(単調減少関数の積分可能性)
関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ a,b\right] \)に対して、\begin{equation*}f\left( x\right) =-x
\end{equation*}を定めるものとします。この関数\(f\)は\(\left[ a,b\right]\)上で単調減少であるため、先の命題より、\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能です。
例(単調減少関数の積分可能性)
関数\(f:\mathbb{R} \supset \left[ -1,0\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ -1,0\right] \)に対して、\begin{equation*}f\left( x\right) =x^{2}
\end{equation*}を定めるものとします。この関数\(f\)は\(\left[ -1,0\right] \)上で単調減少であるため、先の命題より、\(f\)は\(\left[ -1,0\right] \)上でリーマン積分可能です。
例(狭義単調減少関数の積分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界な閉区間\(\left[ a,b\right] \)上に定義された関数\begin{equation*}f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \end{equation*}が\(\left[ a,b\right] \)上において狭義単調減少関数であるものとします。つまり、\begin{equation*}\forall x,x^{\prime }\in \left[ a,b\right] :\left[ x<x^{\prime }\Rightarrow
f\left( x\right) >f\left( x^{\prime }\right) \right] \end{equation*}が成り立つということです。狭義単調減少関数は単調減少関数であるため、先の命題より、\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能です。

単調増加関数と単調減少関数を総称して単調関数と呼びます。先の2つの命題より、有界閉区間上に定義された単調関数はリーマン積分可能であることが保証されます。

命題(単調関数の積分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)が単調関数であるならば、\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能である。

 

リーマン積分可能な関数は単調関数であるとは限らない

先の命題はリーマン積分可能であるための十分条件であり、必要条件ではありません。つまり、有界閉区間上に定義された単調ではない関数がリーマン積分可能であるような状況は起こり得ます。以下の例より明らかです。

例(単調ではないリーマン積分可能な関数)
関数\(f:\mathbb{R} \supset \left[ -1,1\right] \rightarrow \mathbb{R} \)はそれぞれの\(x\in \left[ -1,1\right] \)に対して、\begin{equation*}f\left( x\right) =x^{2}
\end{equation*}を定めるものとします。この関数\(f\)は\(\left[ -1,1\right] \)上において単調ではありません。実際、\(\left[ -1,0\right] \)上において狭義単調減少である一方、\(\left[ 0,1\right] \)上において狭義単調増加だからです。後ほど示すように、有界閉区間上に定義された連続関数はリーマン積分可能ですが、この関数\(f\)は\(\left[ -1,1\right] \)上で連続であるためリーマン積分可能です。

 

単調関数の上積分および下積分可能性

有界閉区間上に定義された有界な関数がリーマン積分可能であることは、その関数が上リーマン積分可能かつ下リーマン積分可能であるとともに上リーマン積分と下リーマン積分が一致することと必要十分です。以上の事実と先の命題を踏まえると以下を得ます。

命題(単調関数の上積分かつ下積分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)が単調関数であるならば、\(f\)は\(\left[ a,b\right] \)上で上リーマン積分可能かつ下リーマン積分可能であるとともに、上リーマン積分と下リーマン積分の間に、\begin{equation*}\overline{\int }_{a}^{b}f\left( x\right) dx=\underline{\int }_{a}^{b}f\left(
x\right) dx
\end{equation*}という関係が成り立つ。

証明

プレミアム会員専用コンテンツです
ログイン】【会員登録

 

演習問題

問題(単調関数のリーマン積分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)がそれぞれの\(x\in \left[ a,b\right] \)に対して、\begin{equation*}f\left( x\right) =x^{3}
\end{equation*}を定めるものとします。\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能であることを示してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(単調関数のリーマン積分可能性)
\(a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)がそれぞれの\(x\in \left[ a,b\right] \)に対して、\begin{equation*}f\left( x\right) =e^{x}
\end{equation*}を定めるものとします。\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能であることを示してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

問題(単調関数のリーマン積分可能性)
\(0<a<b\)を満たす実数\(a,b\in \mathbb{R} \)を端点とする有界閉区間上に定義された関数\(f:\mathbb{R} \supset \left[ a,b\right] \rightarrow \mathbb{R} \)がそれぞれの\(x\in \left[ a,b\right] \)に対して、\begin{equation*}f\left( x\right) =\ln \left( x\right)
\end{equation*}を定めるものとします。\(f\)は\(\left[ a,b\right] \)上でリーマン積分可能であることを示してください。
解答を見る

プレミアム会員専用コンテンツです
ログイン】【会員登録

関連知識

Mailで保存
Xで共有

質問とコメント

プレミアム会員専用コンテンツです

会員登録

有料のプレミアム会員であれば、質問やコメントの投稿と閲覧、プレミアムコンテンツ(命題の証明や演習問題とその解答)へのアクセスなどが可能になります。

ワイズのユーザーは年齢・性別・学歴・社会的立場などとは関係なく「学ぶ人」として対等であり、お互いを人格として尊重することが求められます。ユーザーが快適かつ安心して「学ぶ」ことに集中できる環境を整備するため、広告やスパム投稿、他のユーザーを貶めたり威圧する発言、学んでいる内容とは関係のない不毛な議論などはブロックすることになっています。詳細はガイドラインをご覧ください。

誤字脱字、リンク切れ、内容の誤りを発見した場合にはコメントに投稿するのではなく、以下のフォームからご連絡をお願い致します。

プレミアム会員専用コンテンツです
ログイン】【会員登録