
距離空間において分離している2つの集合
距離空間の2つの部分集合が互いに素であるとともに、どちらも相手の集積点を要素として持たない場合、それらの集合は分離していると言います。分離の概念は触点や開集合を用いて表現することもできます。

距離空間の2つの部分集合が互いに素であるとともに、どちらも相手の集積点を要素として持たない場合、それらの集合は分離していると言います。分離の概念は触点や開集合を用いて表現することもできます。

距離空間Xの部分集合Aが完備かつ全有界であることは、Aがコンパクト集合であることと必要十分です。以上の結果はハイネ・ボレルの被覆定理の一般化です。

距離空間Xの部分集合Aが与えられたとき、A上の任意の点列がAの点へ収束する部分列を持つ場合にはAを点列コンパクト集合と呼びます。距離空間の部分集合が点列コンパクトであることとコンパクトであることは必要十分です。

距離空間Xの部分集合Aが与えられたとき、Aの任意の無限部分集合がA上に集積点を持つことは、AがX上のコンパクト集合であるための必要十分条件です。

距離空間の部分集合の任意の開被覆が有限部分被覆を持つ場合、そのような集合をコンパクト集合と呼びます。また、コンパクト集合であるような距離空間をコンパクト距離空間と呼びます。

距離空間の部分集合に対して正の実数を任意に選んだとき、その実数を半径とする有限個の近傍によってその集合を必ず覆うことができる場合、そのような集合は全有界であると言います。全有界な集合は有界である一方で、有界な集合は全有界であるとは限りません。

距離空間の部分集合の直径が有限な実数として定まる場合、その集合は有界であると言います。有界であることは距離や近傍を用いて表現することもできます。

部分距離空間上の点列が収束する場合、その点列はもとの距離空間上においても収束します。その一方で、部分距離空間上の点列がもとの距離空間上において収束する場合、その点列は部分空間上において収束するとは限りません。

有限個の距離空間の直積上に定義される距離関数を直積距離と呼びます。また、距離空間の直積と直積距離の組を直積距離空間と呼びます。マンハッタン直積距離、ユークリッド直積距離、チェビシェフ直積距離などは直積距離です。

連続型の確率変数の値と確率密度関数の値の積を全区間上で積分することにより得られる値を確率変数の期待値と呼びます。期待値は確率変数の実現値の見込みの値を表す指標です。

ユークリッド空間の非空な部分集合Cが与えられたとき、Cに属するすべてのベクトルとの内積が非負になるようなベクトルをすべて集めることにより得られる集合をCの双対錐と呼びます。

錐であるような多面体を多面錐と呼びます。多面体は凸集合であるため、多面錐もまた凸集合です。多面錐は定数ベクトルがゼロであるような連立1次不等式の解集合です。

連立1次不等式の解集合を多面体と呼びます。連立1次方程式の解集合や、1次方程式と1次不等式が混在する連立式の解集合もまた多面体です。多面体は凸集合です。

ユークリッド空間の部分集合に属する2つの点を任意に選んだとき、それらの任意の錐結合がその集合の要素であるならば、その集合を凸錐と呼びます。凸錐は凸集合であるような錐です。

ユークリッド空間の部分集合に属する2つの点を任意に選んだとき、それらの任意のアフィン結合がその集合の要素であるならば、その集合をアフィン集合と呼びます。

独立変数とパラメータを複数個ずつ持つ関数の制約条件なし最大化問題に関する包絡線定理について解説します。包絡線定理を用いれば、価値関数を具体的に特定することなく価値関数の偏微分を導出できます。

独立変数とパラメータを1つずつ持つ関数の制約条件なし最大化問題に関する包絡線定理について解説します。包絡線定理を用いれば、価値関数を具体的に特定することなく価値関数の微分を導出できます。

1階の常微分方程式が完全微分方程式ではない場合にでも、何らかの関数(積分因子)を両辺に掛けることにより完全微分方程式になる場合、完全微分方程式の解法を用いて解くことができます。

集団の内部において噂が拡散していく状況を微分方程式(ロジスティック微分方程式)を用いて記述するとともに、その微分方程式を解く方法について解説します。

重力と空気抵抗の影響を受けながら垂直落下する物体の運動を描写する微分方程式を特定するとともに、その微分方程式を解く方法を解説します。

放射能を持つ原子核が放射性崩壊を起こす状況を微分方程式を用いて記述するとともに、放射性崩壊の法則のもとで、微分方程式を解く方法を解説します。

人口増加にともない1人あたり人口変化率が減少していく状況を想定した人口変動モデルをロジスティックモデルと呼びます。ロジスティックモデルを微分方程式を用いて記述するとともに、それらを解く方法について解説します。

瞬間ごとに金利が発生する状況を想定した複利を連続複利と呼びます。連続複利のモデルを微分方程式を用いて定式化するとともに、その解を求める方法を解説します。

マルサス成長モデルとは、1人あたり人口変化率が一定と仮定した上で人口の増減を描写するモデルです。マルサス成長モデルを微分方程式を用いて記述するとともに、それらを解く方法について解説します。

1階の常微分方程式が完全微分方程式であることの意味を定義するとともに、微分方程式が完全微分方程式であることの判定方法や、完全微分方程式の解法について解説します。