
距離空間上の写像の極限(収束する写像)
距離空間の部分集合Aが与えられたとき、点aの任意の近傍がAとAの補集合の双方と交わるならば、aをAの境界点と呼びます。また、Aのすべての境界点からなる集合をAの境界と呼びます。

距離空間の部分集合Aが与えられたとき、点aの任意の近傍がAとAの補集合の双方と交わるならば、aをAの境界点と呼びます。また、Aのすべての境界点からなる集合をAの境界と呼びます。

距離空間X上に存在する2つの点を写像fを通じて距離空間Y上の点に変換しても2つの点の間の距離が変わらない場合、fを等長写像と呼びます。また、全単射であるような等長写像が存在する場合、XとYは距離空間として等長であると言います。

リプシッツ定数が1より小さいリプシッツ関数を縮小関数と呼びます。縮小関数の定義域が完備集合であり、なおかつ値域が定義域の部分集合である場合、その関数は不動点を持ちます。

実数空間Rの非空な部分集合Aの要素を項として持つ任意のコーシー列の極限がAの要素になる場合、Aを完備な部分集合と呼びます。実数空間の部分集合が完備であることと、その集合が閉集合であることは必要十分です。

空間上の領域に定義された3変数関数を3重積分するのが困難である場合、積分領域と被積分関数を球面座標(空間極座標)に変換してから3重積分をとることにより計算が簡単になることがあります。

空間上の領域に定義された3変数関数を3重積分するのが困難である場合、積分領域と被積分関数を円筒座標(空間極座標)に変換してから3重積分をとることにより計算が簡単になることがあります。

平面上の領域に定義された2変数関数を2重積分するのが困難である場合、積分領域と被積分関数を円座標(平面極座標)に変換してから2重積分をとることにより計算が簡単になることがあります。

直方体域とは限らない一般の領域上に定義された多変数関数が多重リーマン積分可能であるための条件を特定するとともに、多重リーマン積分を具体的に導出する方法を解説します。

空間上に存在する曲線が滑らかでない場合でも、それを有限個の滑らかな弧に分割できる場合には、個々の弧の長さの総和をとることにより、もとの曲線の長さを特定できます。

集合の直積の補集合は、個々の集合の補集合の直積と一致するとは限りません。集合の直積の補集合は、個々の集合の補集合と全体集合の直積どうしの和集合として表現することはできます。

有界閉区間上に定義された関数の値域が定義域の部分集合であるとともに、その関数が連続である場合や、単調増加である場合などには、その関数は不動点を持つことが保証されます。

関数の極限をそのままでは特定するのが難しい場合、変数を変換することにより極限を容易に特定できるようになる場合があります。変数を変換した上で関数の極限を特定する方法について解説します。

2つの変数が関数を用いて関連付けられている場合、合成関数の微分を用いることにより、一方の変数の瞬間変化率が判明すれば、もう一方の変数の瞬間変化率も判明します。これを関連する変化率(related rates)と呼びます。

自然数集合は整列集合であるという事実を整列原理と呼びます。整列原理は数学的帰納法の原理や完全帰納法の原理と必要十分です。整列原理は背理法を用いた証明において有用です。

非空な順序部分集合が上に有界であるとともに、上界からなる集合が最小元を持つ場合、それを上限と呼びます。また、非空な順序部分集合が下に有界であるとともに、下界からなる集合が最大元を持つ場合、それを下限と呼びます。

直方体領域とは限らない一般の領域上に定義された3変数関数が3重リーマン積分可能であるための条件を特定するとともに、3重リーマン積分を具体的に導出する方法を解説します。

長方形領域とは限らない一般の領域上に定義された2変数関数が2重リーマン積分可能であるための条件を特定するとともに、2重リーマン積分を具体的に導出する方法を解説します。

有界かつ閉な直方体上に定義された多変数関数が連続である場合、関数は多重積分かつ逐次積分可能であるとともに、逐次積分の値は多重積分の値と一致します。これをフビニの定理と呼びます。

多変数関数を1変数関数とみなした上でリーマン積分をとり、得られた関数を再び1変数関数とみなした上でリーマン積分をとる、という操作をすべての変数に対して繰り返すことにより得られる値を逐次積分と呼びます。

曲面(パラメータ付き曲面)という概念は2変数のベクトル値関数の地域として定義されます。曲面はベクトル方程式は媒介変数表示、方程式などを用いて表現することもできます。

変数xの自由な現れを持つ論理式A(x)に関する全称命題が偽であることを示すために、命題A(x)が偽になるような値xを具体的に提示する証明方法を反例による反証と呼びます。

変数xの自由な現れを持つ論理式A(x)に関する存在命題が真であることを示すために、命題A(x)が真になるような値xを具体的に提示する証明方法を構成的証明と呼びます。

空間上に存在する点の位置を特定するために、それぞれの点に対して付与される数の組を座標と呼びます。最も基本的な座標系である直交座標系について解説します。

平面上に存在する曲線が媒介変数表示されている状況において、曲線とy軸によって囲まれる領域の面積をリーマン積分を用いて求める方法を解説します。

平面上に存在する曲線が媒介変数表示されている状況において、曲線とx軸によって囲まれる領域の面積をリーマン積分を用いて求める方法を解説します。

平面上に存在するサイクロイドが媒介変数表示されている状況において、サイクロイド上に存在する点のx座標とy座標の値の関係を微分を用いて評価する方法を解説します。

有界閉区間上に定義された変数yに関する2つの連続関数のグラフによって囲まれた領域の面積をリーマン積分を利用して求める方法を解説します。

有界閉区間上に定義された変数yに関する連続関数とy軸によって囲まれた領域の面積をリーマン積分を利用して求める方法を解説します。

有界閉区間上に定義された変数xに関する2つの連続関数のグラフによって囲まれた領域の面積をリーマン積分を利用して求める方法を解説します。

有界閉区間上に定義された変数xに関する連続関数とx軸によって囲まれた領域の面積をリーマン積分を利用して求める方法を解説します。

絶対連続関数を対象とした場合、ルベーグ積分に関しても微分積分学の第2基本定理は成立します。つまり、有界閉区間上に定義された絶対連続関数の導関数をルベーグ積分すると関数の変化量が得られます。

ルベーグ積分に関しても微分積分学の第1基本定理は成立します。つまり、区間[a,b]上においてルベーグ積分可能な関数fが与えられたとき、区間[a,b]上の点xを任意に選んだ上で関数fを区間[a,x]上でルベーグ積分して得られた結果を微分すると、関数fが点xに対して定める値f(x)が得られます。

有界閉区間上に定義された関数が定義域上で連続であり、定義域の内部である有界開区間上で微分可能であり、なおかつ導関数が有界である場合、その関数は絶対連続になることが保証されます。