
絶対連続関数の微分可能性
有界閉区間上に定義された絶対連続関数は定義域上のほとんどいたるところで微分可能です。リプシッツ関数は絶対連続関数であるため、有界閉区間上に定義されたリプシッツ関数もまたほとんどいたるところで微分可能です。

有界閉区間上に定義された絶対連続関数は定義域上のほとんどいたるところで微分可能です。リプシッツ関数は絶対連続関数であるため、有界閉区間上に定義されたリプシッツ関数もまたほとんどいたるところで微分可能です。

有界閉区間上に定義された絶対連続関数は有界変動関数ですが、有界変動関数は絶対連続関数であるとは限りません。また、絶対連続関数は2つの単調増加な連続関数の差として表されます。

有界閉区間上に定義された有界変動関数は連続であるとは限らず、逆に、連続関数は有界変動であるとは限りません。その一方で、有界変動関数はほとんどいたるところで連続です。

有界閉区間上に定義されたリプシッツ関数は絶対連続関数であることが保証される一方で、絶対連続関数はリプシッツ関数であるとは限りません。絶対連続関数は一様連続であり、一様連続関数は連続であるため、リプシッツ関数は一様連続かつ連続です。

有界閉区間上に定義された絶対連続関数は一様連続であることが保証される一方で、一様連続関数は絶対連続関数であるとは限りません。一様連続関数は連続であるため、絶対連続関数は連続です。

リプシッツ関数(リプシッツ連続関数)の概念を定義するとともに、その意味を解説します。加えて、関数がリプシッツ連続であること、リプシッツ連続ではないことを判定する方法を解説します。

関数が有界閉区間上で有界変動であることと、それぞれの小区間において有界変動であることが必要十分です。しかも、それぞれの小区間における全変動の総和をとれば、もとの区間における全変動が得られます。

関数の定義域である有界閉区間をどのような形で分割した場合においても、それぞれの小区間における関数の値の差の総和が有限な値に収まる場合、その関数は有界変動であると言います。

カントール集合の要素はいずれも小数点以下が0または2であるような3進数として一意的に表現されますが、それを2進数に変換する関数をカントール関数と呼びます。カントール関数は全射かつ単調増加かつ連続です。

カントール集合を定義するとともに、3進展開を用いてカントール集合を特徴づけます。カントール集合は非空なコンパクト集合であるとともに、非可算集合であるような零集合でもあります。

関数の上極限は右上極限と左上極限のうちの大きい方と一致します。また、関数の下極限は右下極限と左下極限のうちの小さい方と一致します。

関数の無限大における上極限と下極限がともに有限であるとともに両者が一致することは、その関数が無限大において有限な実数へ収束するための必要十分条件です。その場合、極限は上極限や下極限と一致します。

有界閉区間上に定義された単調増加関数の右上ディニ微分や左上微分が正の無限になる点からなる集合の外測度はゼロです。また、有界閉区間上に定義された単調減少関数の右下ディニ微分や左下ディニ微分が負の無限になる点からなる集合の外測度はゼロです。

有界閉区間上に定義された単調増加関数の上ディニ微分が正の無限になる点からなる集合の外測度はゼロです。また、有界閉区間上に定義された単調減少関数の下ディニ微分が負の無限になる点からなる集合の外測度はゼロです。

関数が右上ディニ微分可能かつ右下ディニ微分可能であるとともに右上と右下のディニ微分係数が一致することは、その関数が右側微分可能であるための必要十分条件です。しかもこのとき、右側微分係数は右上と右下のディニ微分係数と一致します。左側微分についても同様です。

関数の平均変化率を変化量に関する関数とみなした場合の右側上極限を右上ディニ微分係数と呼び、左側上極限を左上ディニ微分係数と呼び、右側下極限を右下ディニ微分係数と呼び、左側下極限を左下ディニ微分係数と呼びます。

点集合のヴィタリ被覆の中から有限個の互いに素な区間を上手く選んだ上で、選んだ区間の和集合ともとの集合との差集合をとることにより、その差集合の測度をいくらでも小さくすることができます。これをヴィタリの被覆定理と呼びます。

関数が上ディニ微分可能かつ下ディニ微分可能であるとともに上下のディニ微分係数が一致することは、その関数が微分可能であるための必要十分条件です。しかもこのとき、微分係数は上下のディニ微分係数と一致します。

関数の右側上極限と右側下極限が有限な実数として定まるとともに両者が一致することは、その関数が有限な実数へ収束するための必要十分条件です。しかもその場合、右側極限は右側上極限や右側下極限と一致します。左側極限についても同様です。

関数の上極限と下極限が有限な実数として定まるとともに両者が一致することは、その関数が有限な実数へ収束するための必要十分条件です。しかもその場合、極限は上極限や下極限と一致します。

関数の値域が上に有界である場合、その関数は上に有界であると言います。関数の値域が下に有界である場合、その関数は下に有界であると言います。上に有界かつ下に有界な関数を有界な関数と呼びます。

集合列の要素である無限個の集合の要素を集めてできる集合をもとの集合列の上極限と呼びます。また、集合列の要素である有限個の集合を除いたすべての集合の要素を集めてできる集合をもとの集合列の下極限と呼びます。

測度が有限であるとは限らない一般のルベーグ可測集合上に定義されたルベーグ可測関数列が各点収束するとともに一様可積分かつ一様緊密である場合には、関数列の各点極限に相当する関数のルベーグ積分は、関数列の要素である個々の関数のルベーグ積分からなる数列の極限と一致します。

関数の片側上極限(右側上極限と左側上極限)と片側下極限(右側下極限と左側下極限)を定義します。関数が局所有界である場合、その片側上極限と片側下極限がそれぞれ有限な実数として定まることが保証されます。

区間上に定義された上に有界な単調増加関数や下に有界な単調減少関数は区間の右側の端点において左側収束します。また、下に有界な単調増加関数や上に有界な単調減少関数は区間の左側の端点において右側収束します。

数列の上極限と下極限が有限な実数として定まるとともに両者が一致することは、その数列が有限な実数へ収束するための必要十分条件です。しかもその場合、極限は上極限や下極限と一致します。

有限測度を持つルベーグ可測集合上に定義されたルベーグ可測関数列が各点収束するとともに一様可積分である場合には、関数列の各点極限に相当する関数のルベーグ積分は、関数列の要素である個々の関数のルベーグ積分からなる数列の極限と一致します。

関数がルベーグ積分可能である場合、関数の定義域を十分小さいルベーグ可測集合へ縮小すれば、絶対値関数のルベーグ積分の値を限りなく小さくすることができます。

無限区間上に定義された非負値をとるルベーグ可測関数が第1種の広義リーマン積分可能である場合、その関数はルベーグ積分可能になるとともに、両者の積分の値は一致します。

区間上に定義された非負値をとるルベーグ可測関数が第2種の広義リーマン積分可能である場合、その関数はルベーグ積分可能になるとともに、両者の積分の値は一致します。

ルベーグ積分可能な関数の定義域を複数の互いに素なルベーグ可測集合に分割した場合、その個数が有限および可算のどちらの場合でも、個々の集合におけるルベーグ積分の和をとればもとの集合におけるルベーグ積分が得られます。

ルベーグ可測関数列が各点収束するとともに、その間数列を支配し、なおかつルベーグ積分可能であるような関数が存在する場合には、関数列の各点極限に相当する関数のルベーグ積分は、関数列の要素である個々の関数のルベーグ積分からなる数列の極限と一致します。

ルベーグ積分可能な2つのルベーグ可測関数の間に一方的な大小関係が成立する場合、両者のルベーグ積分の間にも同様の大小関係が成立します。以上の性質を単調性と呼びます。

ルベーグ可測関数に対して、その絶対値関数が定める値以上の値をとるルベーグ積分可能な関数が存在する場合、もとの関数もまたルベーグ積分可能であることが保証されます。

2つのルベーグ可測関数がルベーグ積分可能である場合、それらの差として定義されるルベーグ可測関数もまたルベーグ積分可能であるとともに、そのルベーグ積分はもとの2つの関数のルベーグ積分の差と一致します。

2つのルベーグ可測関数がルベーグ積分可能である場合、それらの和として定義されるルベーグ可測関数もまたルベーグ積分可能であるとともに、そのルベーグ積分はもとの2つの関数のルベーグ積分の和と一致します。

ルベーグ可測関数がルベーグ積分可能である場合、その定数倍として定義されるルベーグ可測関数もまたルベーグ積分可能であるとともに、そのルベーグ積分はもとの関数のルベーグ積分の定数倍と一致します。

非負値をとるルベーグ可測関数の形状が分からない場合でも、ルベーグ積分の値さえ明らかであれば、その関数が特定の値以上になるような変数の値からなるルベーグ可測集合の測度が収まる範囲を特定できます。